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Chapter 1 Answers

11.

1.4.

1.10.

1.11.

1.12.

Converting from polar to Cartesian coordinates:

Lo = boosm = —4 Je 7" = Joos(—x) = =3
&5 = con (5) +sn () =5, €8 mom(F) i (E) 2 S
1 = 75 =, VZeit = V2 {oos (§) +3sin(§)) =1 +7

Vi = e =147, VIeTE =l =1-5
VZetT =1-3j

Converting from Cartesian to polar coordinates:

5 = 5e’0, —2 = 297, —3j = 3e79%

Lol mei, 14j=vEE, (1-jP =273
: jx C S | Vi+ivE _ —ifh
- =e%, H=ei, Y =eln

-
(a) B = f e~3tdt = 4, Poo = 0, because Eop < 00
(1]
i
(b) zalt) = @3+, [a3(8)] = L. Therefore, B = Fil‘z(t}lzlﬂ o / 5 oo, Pao =
T ) T o e
o = li = i .
e [ P fim g [ e = i1 =1

= {--}
(¢} z3{t) = cos(t). Therefore, Eew = jza(t)dt = / cos?*(t)dt = oo,
o0

s =
1 /7T . 1 (T f1+cos(2t) 8
= lim — = = —]dt=
o= i g [ etom= o [ (5 :
= oc
d o
(d) mln] = (4)" sl il = (3)" ulrl. Therefore, Boo = 3 lmaloll® = i (=g,
n=—o0 n =N
Pyp=0, because Eoe < 0.
o
(e) zafn] = &8, |za[n][* = 1. Thercfore, Eoo = S lmafn)l? = o0
o : e
e [ gt 2 = lim ———— 1=1,
Pro = Jim gy 2 bl = o =
o0 o0 P
(f) z3ln) = cos(Zn). Therefore, Boc = Y fzafn]l® = 3 cost(gn) =oe
n=-—oo n==00
N N =
ATl R e I_LM) L
P”‘J‘.‘f‘mzNHHEN"‘“(4"";5?@2N+1ﬂ§~( P 2

(a) The signal z[n] is shifted by 3 to the right. The shifted signal will be zero forn <1
and n > 7.

(b) The signal z[n] is shifted by 4 to the left. The shifted signal will be zero for n < -6
and n > 0.

(a) Re{ni(t)} = —2 = 2% cos(0t + *) )

(b) Re{za(t)} = vZcos() cos(3t + 27) = cos(3t) = ¥ cos(3t +0)

(c) Re{za(t}} = e sin(3t +7) = et cos(3t + 3)

(d) Re{zq(t)} = —e™ain(100t) = ¢~ 5in(100t + 7) = €~ cos(100% + §)

() z,(t) is a periodic complex exponential.

2i(t) = G0 = 101+ 5)

The fundamental period of z,(t) is 35 = §-

(b) za(t) is a complex exponential multiplied by a decaying exponential. Therefore, z3(t)
is not periodic.

{c) z3[n] is a periodic signal. ) )

13[,1] e e3-7ll'k = E.J*n
23|n) is a complex exponential with a fundamental period of "’7“ =2

(d) 24[n] is a periodic signal. The fundamental period ?s given by N = m(%] = m{Lfr),
By choosing m = 3, we obtain the fundamental period to be 10.

(e) zs5{n] is not periodic. z5in] is a complex exponential with wg = 3/5. We cannot find
any integer m such that m(%’;) is also an integer. Therefore, 25[n] is not periodic.

Z(t) = 2cos(10t + 1) — sin(dt — 1)

Period of first term in RHS = %—'h'- =%
Period of second term in RHS = =z

Therefore, the overall signal is periodic with a period which is the least common multiple
of the periods of the first and second terms. This is equal to 7.

zin] =1 FeF - %n

Period of the first term in the RHS =1

Period of the second term in the RHS = m(‘—-e_’f‘,,-f) =7 (whenm =2)

Period of the third term in the RHS = m(%’g) =5 (whenm=1)

Therefore, the overall signal zfn] is periodic with a period which is the least common
multiple of the periods of the three terms in z{n]. This is equal to 35.

The signal z[n) is as shown in Figure S1.12. z[n] can be obtained by ﬂipping_u[n] ar}d then
shifting the Ripped signal by 3 to the right. Therefore, z{n] = u[~n +3]. This implies that
M = —1and ng = ~3.
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(c) The sigoal z[n] is flipped. The flipped signal will be zero for n < —4 and n > 2.

(d) 'I.'he sign_a.l z[n] is flipped and the flipped signal is shifted by 2 to the right. This new
signal will be zero for n < ~2 and n > 4.

(e) 'I.‘he signal z[n] is flipped and the flipped signal is shifted by 2 to the left. This new
signal will be zero for n < —6 and n > 0.

1.5. (a) z(1 — t) is obtained by flipping z(t) and shifting the fipped signal by 1 to the right.

Therefore, z{1 — t) will be zero for t > —2.

(b) From (a), we know that z(1—t) is zero for ¢ > —2. Similarly, 2{2—1) is zero fort > —1.
Therefore, (1 — £) + z(2 — t) will be zero for ¢ > —2.

() z(3) is obtained by linearly compressing z(t) by a factor of 3. Therefore, z(3t) will be
zero for t < 1.

(d) z(t/3) is obtained by linearly stretching z(t) by a factor of 3. Therefore, z(t/3) will be
zero for t < 9.

1.6. (a) z1(t) is not periodic because it is zero for t < 0.
(b) z3[n] = 1 for all n. Therefore, it is periodic with a fundamental period of 1.
(c) z3[n] is as shown in the Figure S1.6.

1 1 1 g
& ]II B Il .

-1
Figure S1.6

Therefore, it is periodic with a fundamental period of 4.
1.7.  (a)

Ev{zm[n]} = %(3“[“] +zi[-n)) = %(u[n] —ufn — 4] + u[-n] = u[-n - 4))

Therefore, £v{z1[n]} is zero for |n} > 3.
(b) Since z3(t) is an odd signal, Ev{z(t)} is zero for all values of ¢.
()

Evizsinl) = 3zl + maf-n]) = %[(%)“u{n 3= (3)"ul-n - 3)

Therefore, Ev{z3|n]} is zero when |n| < 3 and when |n| = co.

(d)
Evlzilt)} = g (zel0) + 2a(-t) = LeSu(t+2) - Mul-t+2)

Therefore, £v{z4(t)} is zero only when |t} = oo.

2200 AR A0 e

-2-1o | 23

Figure S1.12
1.13.
3 t 0, < =2
) = f o(r)dt = j (B +2) —flr—Mdt=4 1, -—2<t<?
b R 0, t>2
Therefore,
2
Eyp= dt =4
-2
1.14. The signal z(t) and its derivative g(t) are shown in Figure S1.14.

x_(t]i &) S y
L s e
2.

- [ 1] z I . =
‘ + o +
-2 -3 ~3

Figure $1.14

Therefore,
gy=3 Y Bt-2%)-3 3 S(t-2%-1)

k=—00 k=-00

This implies that A} =3, ¢, =0, Az =3, and t = L.

1.15. (a) The signal T2[n], which is the input to S, is the same as y1[n]. Therefore,

win] = =n-2+ %Iq[ﬂ —3

= nh-2+ %yl[n—ﬂ}

I

2z4[n — 2] + 4z fn - 3] + %{?.‘r:l[n = 3]+ 4zy[n — 4])
= 2r)[n — 2]+ 5zy[n — 3] + 25y[n — 4]

The input-output relationship for § is

yin] = 2z(n — 2] + 5xfn — 3] + 2z[n — 4]
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(1ii) In this case
X{e“} =1+ Ee'-"“

Therefore, )
Y{&)=1

Taking the inverse Fourier transform, we obtain
y[n] = é[n).

(iv) In this case
: 1
X(e“)y=1- Ee“-"".

Therefore,
Y(e?¥) = Ll
(e7) [I 2° ] [l + %c‘i"‘]

2

= =14 —r
1+Jz-¢‘1“

Taking the inverse Fourier transform, we obtain

yln) = —é[n] + 2 (—%) uln].
(c} (i) We have

Yie~ e !
) 1+}e 5o l+le-w

e dw

1+ ,e--w)ﬂ (1 + je3e)?

Taking tke inverse Fourier transform, we obtain

Y] = (n +1) (—%)nu{nj -1 (-%)Hu[n )

14 ge™v 1
1- 4Ie‘1‘-' L4 e
1|
1-te-w

(i) We have

¥(e™)

Taking the inverse Fourier transform, we obtain
1 n
ool = (3) wlnl
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5.35. (a) Taking the Fourier transform of both sides of the given difference equation we obtain

_Y(e) _ bte
B = Xem) = Toae s
In order for |H(e?*)| to be one, we must ensure that
[b+e = |1-ae
14 6% + 2bcosw = 1+a°—2acosw

This is possible only if b = —a.
(b) The plot is as shown Figure $5.35.
(c) The plot is as shown Figure 55.35.

&H[é"] {chs"']

= Y o

o . /\\.__/w w a! A4 T
’-\/ (5 )

|
Ko l, )
it

F

1
()
Figure 55.35
(d) When a = -4,
14 g=jw

jwy _ B+e
ey o

Also, .
gl

Therefore,
” et
2 (1+ je i@)(1 — Je-iv)
/4 34

L—deio 14 fe-iw

Taking the inverse Fourier transform we obtain
5 (1}" 3/ 1\"
el =5 (3) o= 3 (-3) v
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(1ii) We have

jwy 1 1
T [(1+;c-:~)(1 - }r.w)] [1+=}e‘1“‘}

2/3 2/9 1/9
U+ fep T Txfew T T lesm

Taking the inverse Fourier transform, we obtain

vin) = 2n+ ) (ﬁ%)nu[n] +2 (7%)"‘.{«.1 3 (;—)"u[n].

‘ 1
| Tt [ P —
[1+2 ] [l +%—e'i"’]

1 o 25-3_1&.-
14 dei " 1+ femrw

(iv) We have

It

Y ()

Taking the inverse Fourier transform, we obtain

vlr] = (-%) uln) + 2 (-%)Mu[n -3

5.34. (a) Since the two systems are cascaded, the frequency response of the overall system is
H(e™) = Hi()Ha(el)
2—eIv
1+ je-s%

Therefore, the Fourier transforms of the input and output of the overall system are
related by

Y(e)  2-e

X (er) SEET %3*1'3-#'
Cross-multiplying and taking the inverse Fourier transform, we get

1
y[n] + §yfn - 3] =2z[n] — z[n - 1].
(b) We may rewrite the overall frequency response as

Hewy=—33 _, A+3V3)/8 (-3

T+ fe ' 1= Lei®ero * 1= [e-itgu’

Taking the inverse Fourier transform we get

M) =3 (—%)nu[n] - +;f ( em) uln] + I‘T"/j (%wm)"u[ng‘
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This is as sketched in Figure $5.35.
5.36. (a) The frequency responses are related by the following expression:

Gle™) = E(l,—.,.}
(b) (i) Here, #(e™) = 1 - }e™*. Therefore, G(e#) = 1/(1 - Le~5) and gin] = (})"uln],
Since
Gl =X __ 1

X(e-‘”] P }C-Ju’
the difference equation relating the input z[n n] and output y{n) is
vln] - —y[ﬂ - 1] =zfn].
(ii) Here, H(e™) = 1/(1 + je™7*). Therefore, G(e™) = 1 + $e™7% and g[n] = 4[n) +
$6[n - 1]. Since
Y(eM) 1,
Xy “1+ae
the difference equation relating the input z[n] and output y[n] is

G(e) =

y[n] = z[n] + l:{n -1).

(iii) Here H(e™) = (1= fe™#)/(1 + le™3). Therefore, G(e/*) = (1 + ! Lem3y/01
1€7) and gln] = ( )“ﬂ [n] + 2( )*~'uln - 1]. Since

Glev) = Y} _1+de

X(@=) T 1= e

the difference equation relating the input z[n) and output y(n] is
1 1
yin] = -y[u =1} = z[n] + —r[n -1].

(iv) Here, H(E’“) =(1- ;e'-"" - ﬁ-E'?"“)/(l + 2 "‘ e™7 — Le=Bw). Therefore, G(e/%) =

(I + 5 e~iw _ -2::.:)/(] i I‘ —jw _ Ee-z,u) Tberefore,
- 2 2
et b 1= (1/2)e ™ 1+ (1/4)e2=
and = N
oln) = gt + 2 %) ) -2 (-1) el
Since

Y(e™)  (1+5ev ~ femv)
X(e) (1= few = Lemvy
the difference equation relating the input z[n] and output v[n] is

Gle™) =

1 1
¥ln} = 3uln ~ 1] = guln 1] = zfn) + gz{n —1- ér[n —2).
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(g) The unilateral Laplace transform of z[n] = 2%u[-n] + (1/4Yu[n - 1] is

Il

X(z) i?‘u[—n] + {1/4)"u[n — 1)z
n=0

Z(lfd}"z*"

n=0
1

= T;F' All z.

1

(h) The unilateral Laplace transform of z[n} = (1/3)"2uln - 2] is

X(z) = 3 (1" Puln -2
n=0
= 2y (/3
r..:OJz
T T \z| > 1/2.

10.41. From the given information,

S/t uln + )"

n=0

(/23 /2"
n=0
1/2
- W{'?)z'—' I > 1/2

X(z)

[

XE) = S/ un)
n=0

Soasare

n=0

]

bl
1- (1/4)=""

Using Table 10.2 and the time shift property we get

z
Xi(z) = :—%F’ |z > 1/2.

iz > 1/4.

and 1
Xa(z) = I_:F‘ |z| > 1/4.
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Therefore, )

e R
The partial fraction expansion of ¥(z} is
W) = %ﬁ - t—%
The inverse unilateral z-transform gives the zero-state response
sl = (3wl + 337t
(b) Taking the unilateral z-transform of both sides of the given difference equation, we get
V(e - L) - -1 = X - 3o )
2 2 2
Setting X'z} = 0, we get
y{z)=0.

The inverse unilateral z-transform gives the zero-input response
yzln] = 0.

Now, since it is given that z[n] = u[n}, we have

1
Xe) =y, >

pp—
Setting y[—1] to be zero, we get

1
1-2z!

W) - 35 () =

Therefore,

Yi) = 1-2z"1"
The inverse unilateral z-transform gives the zero-state response

yas[n] = uln].

! (c) Taking the unilateral z-transform of both sides of the given difference equation, we get

! V) - 31V - Jul-1] = X () - 37 XD

} Setting X'(z) = 0, we get :
1 Y= 2

T
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(a) We have

6la) = i) = T T lzkl}‘([ ey
2 4

The ROC is |z| > (1/2). The partial fraction expansion of G(z) is

o 2 1
G(‘)*’[l_—%zﬁ*m]-

Using Table 10.2 and the time shift property, we get

gln] =2 (,—;)wufn +1)= (%)n“u[ﬂ+ 1.

1/2
(1~ %z‘l}(l - %z“)‘
The ROC of @(z) is |z] > (1/2). The partial fraction expansion of Y{z) is

1 2 1

atri=(3) wtri -3 (5) olol

Clearly, g[n] # g[n] for n > 0.

(b) We have
Q(z) = Xi(z)Xe(z) =

Therefore,

10.42. (a) Taking the unilateral z-transform of both sides of the given difference equation, we get
Y(z) + 3271 W(z) + 3y[—1] = X{z).
Setting AX'(z) = 0, we get
Y& = ot
The inverse unilateral z-transform gives the zero-input response
vailn] = =3(=3)"ufn] = (=3)**'u[n].

Now, since it is given that z[n] = (1/2)"u[n], we have

1
X = ——
=

|2} > 1/2.
Setting y[—1] to be zero, we get

Viz) +32719(z) = :Tlr*“

3zt
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The inverse unilateral z-transform gives the zero-input response

wnirl = (3) "

Since the input z|n] is the same as the one used in the part (b), the zero-state
response is still
yzaln] = uln].
10.43. (a) First let us determine the z-transform X, (z) of the sequence z1[n] = 7|-n} n terms of
X(z):

oo

Xi(z) = Zx{—n]z'"

"
i)
s
%

i

>
=
=
s

Therefore, if z[n] = z|-n], then X(z) = X(1/2).

(b) If zg is a pole, then 1/X(z) = 0. From the result of part (a), we know that X(zp) =
X(1/z9). Therefore, 1/X(z) = 1/X(1/20) = 0. This implies that there is a pole at
1/zp.

If z is & zero, then X (zo) = 0. From the result of part (a), we know that X (z) =
X(1/20) = 0. This implies that there is a zero at 1/z.
(¢) (1) In this case,

2
X(z)=z+z_1=ltz, |z] > 0.

X (z) has zeros 2 = j and zz = —j. Also, X(z) has the poles p; = 0 and pz = co.
Clearly, zz = 1/z1 and p; = 1/p2, which proves that the statement of (b) is true.

(2) In this case,
1- %z + 22

|z| > 0.
z

X(z):z—%-!—zkl:

X(z) has zeros 2 = —1/2 and 2, = 2. Also, X(z) has the poles py = 0 and
p2 = co. Clearly, z = 1/z; and p1 = 1/p2, which proves that the statement of (b}
is true.

10.44. (a) Using the shift property, we get
Z{Az[n]} = X(2) — 7' X(2) = (1 - z71) X (2).
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(d) In this case

T s+2|s+k+4

The zero which is independent of K is at s = —1. The pole which is independent of K
is at s = —2. The root locus for the remaining closed-loop pole is as shown in Figure
$11.32 for K > 0.

(e) In this case

Q(s)—s+1[-—l——].

1
= )| ————=1-
@ =6+ [t
The zero which is independent of K is at z = —1. The root locus for the pole is as
shown in Figure S11.32 for K > 0.
(£) (i) For this case, we have G(2)H(z) = 1/[(z = 2)(z + 2)]. The root-locus for K > 0

and K < 0 are shown in Figure S11.32.
(i) The system is stable for when the closed-loop poles are within the unit circle. The

closed-loop poles satisfy the condition

G(=)H(z) = —1/K.

Therefore, looking at the plots from before, it is clear that as K increases, the
system becomes stable when G(1)H(1) = —1/K. That is, the system becomes
stable when K > 3. As K continues to increase, the system again becomes unstable
when G(j)H({j) = —1/K. That is, the system becomes unstable when K > 5.
Therefore, the system is stable for 3 < K < 5.

(iii) When K = 4, Q(z) = 1. Therefore, g[n} = 4[n].

11.33. The root loci are as shown in Figure 511.33.
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