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SOLUTIONS TO CHAPTER 2

Background
2.1 The DFT of a sequence z(n) of length N may be expressed in matrix form as follows
X =Wx
where x = [z(0), z(1), ..., (N — 1)]T is a vector containing the signal values and X is a

vector containing the DFT coefficients X (k),

(a) Find the matrix W.
(b) What properties does the matrix W have?
(¢) What is the inverse of W?

Solution

(a) The DFT of a sequence z(n) of length N is

N-1 . N-1
X(k)= Z z(n)e IV = Z z(n)Wx
n=0 n=0

where Wy = e~# % . If we define
E(N—1
wil = [1, Wk, W, .. wkY]
then X (k) is the inner product

X(k)=wi -x
Arranging the DFT coefficients in a vector we have,
X(0) wilx
X(1) wilx
= : = 1 = Wx
[ X(N-1) wi_ix J
where
wil 1 1 1 e 1
wh 1 Wy Wi Wit
W = = .
Wi_1 1 Wy wEND Ly (D

(b) The matrix W is symmetric and nonsingular. In addition, due to the orthogonality of the
complex exponentials,

N-1
—j2m(k— N ;o k=1
Wf-wlr_Ze iF l):{ 0 k£l
n=0

it follows that W is orthogonal.
(c) Due to the orthogonality of W, the inverse is

- H
W= LW
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Problem Solutions

2.7 Show that a projection matrix P 4 has the following two properties,

1. It is idempotent, P4 = P 4.

2. It is Hermitian.

Solution
Given a matrix A, the projection matrix P, is

Ps=A(AYA)TAH

Therefore,

g
o
Il

A(AHA)‘IAHA(AHA)flAH
AAFA)TIAH =P,

and it follows that P4 is idempotent. Also,
H =140 HAN-11H A H
P :{A(A A)lA ] = A[(ATA)1)"A
Since AA¥ is Hermitian, then so is its inverse,

[(A7A)7]" = (a7 A)~
and
PH = A(ATA)1AH

Thus, P4 is Hermitian.
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then the normal equations become (recall that a,(0) = 1)
v

2 ap(ra(k,0) = b(O)a(~k) = b(0)a(no — k) = —ro(k,0) 5 k=12..,p

=1
Assuming that z(n) = 0 for n < 0, with x = [z(ng—1),z(ng—2), ..., z(ng—p)]¥, the normal equations
may be written in matrix form as follows

R,a—-b(0)x = —r,

Finally, differentiating with respect to b(0) we have

0 »

'a‘f(%)‘ = =321 ap(tn— 1) — b(O)5(n) — b(0)3(n — o) | [(n) + 6(n - no)]
. =0 1==0

Thus,

(0) = b(0) + > ap(D)x(no — 1) — b(0) = —z(no)
l=1

or, in vector form, we have
xTa — 2b(0) = —x(0) — x(no)

Putting all of these together in matrix form yields

[ 3 } { “an(0) } = [ £(0) + 2(n) }
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7.15 Let z(n) be an AR(1) process of the following form
z(n) = a(l)z(n — 1) + b(0)w(n)
where w(n) is unit variance white noise, and let y(n) be noisy measurements
y(n) = 2(n) + v(n)

where v(n) is unit variance white noise that is uncorrelated with w(n). We have seen that
the causal Wiener filter for estimating 2(n) from y(n) has the form

Z(n) = a(1)Z(n — 1) + K[y(n) —a(1)Z(n ~ 1)]
Find the value of K in terms of a(1) and b(0) that minimizes the mean-square error

E{fz(n) - 2(n)]*}

Solution
With an estimate of the form

#(n) = a(1)3(n - 1) + K[y(n) — a(D)E(n — 1)}

we want to find the value of K that minimizes the mean-square error
~/ \12

This problem may be solved by differentiating ¢ with respect to K, and sct the result equal to zero.
After a fair amount of work, we find that

_ b2 (0) + az(l)fmin
1+ 82(0) + a2 (Démin

Unfortunately, however, &y, depends upon K. Using the expression

émin =Tz (0) - Z h(l)r:y(l)
1=0

with n
h(n) = K([l - K]a(1)) u(n)
and 2(0)
0 k
Tay(k) = 1o (k) = T__012_(1)(41)1 |
we may easily derive the following expression for £y,
1-K

Emin = bg(o)m

Solving these two equations for K leads to the following quadratic equation,
a?(1)K? + [1+b*(0) — a®(1)]K — b%(0) =0

and the desired solution is the positive real root of this quadratic. Note that if we substitute a(1) = 0.8
and b(0) = 0.6 we arrive at the values for K and &y, derived in Example 7.3.2.
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9.19 Adaptive filters are commonly used for linear prediction. Although harmonic signals such as
sinusoids are perfectly predictable, measurement noise will degrade the performance of the
predictor and add a bias to the coefficients, w. For example, suppose that we want to design
an adaptive linear predictor for a real-valued process z(n) using the noisy measurements

y(n) = z(n) +v(n)

where v(n) is zero mean white noise that is uncorrelated with z(n). Assume that the variance

of v(n) is o2.

(a) Using the LMS algorithm
Wnt1 = Wp + pe(n)y(n)

find the range of values for p for which the LMS algorithm converges in the mean and
find
nlgxgo E{w,}

(b) The 4-LMS algorithm has been proposed as an adaptive filtering algorithm to combat
the effect of measurement noise. Using the noisy observations, y(n), this algorithm is

Wpt1 = YWy, + pe(n)y(n)

where 7 is a constant. Explain how the v-LMS algorithm can be used to remove the bias
in the steady-state solution of the LMS algorithm. Specifically, how would you select
values for u and ~7

Solution

(a) The LMS algorithm is
Wni1 = Wy + pe(n)y(n)

Taking expected values we find
E{wni1} = [I— pR, E{w,} + prqy

where
R, =R, + 0’1

is the autocorrelation matrix of y(n). Since the eigenvalues of R, are
S\k =A;+o0 3

where A are the eigenvalues of R, then the LMS algorithm converges in the mean if

O<py< 7
b Amax + 02
where Apayx is the maximum eigenvalue of R,. Furthermore, if the LMS algorithm converges in

the mean, then
lim E{w,} = (R, +o2I) 'ry,

N~ OO



