DIGITAL DESIGN

With An Introduction to the Verilog HDL

FIFTH EDITION

M. MORRIS MANO MICHAEL D. CILETTI

FIGURE 10.13
Graphic symbol for ripple counter, IC type 7493
the symbol $C T=0$. Since the count input does not go to the clock inputs of all flip-flops, it has no $C 1$ label and, instead, the symbol + is used to indicate a count-up operation. The dynamic symbol next to the + together with the polarity symbol along the input line signify that the count is affected with a negative-edge transition of the input signal. The bit grouping from 0 to 2 in the output represents values for the weights to the power of 2 . Thus, 0 represents the value of $2^{0}=1$ and 2 represents the value $2^{2}=4$.

The standard graphic symbol for the four-bit counter with parallel load, IC type 74161, is shown in Fig. 10.14. The qualifying symbol for a synchronous counter is $C T R$ followed by the symbol DIV16 (divide by 16), which gives the cycle length of the counter. There is a single load input at pin 9 that is split into the two modes, $M 1$ and $M 2 . M 1$ is active when the load input at pin 9 is low and $M 2$ is active when the load input at pin 9 is high. $M 1$ is recognized as active low from the polarity indicator along its input line. The countenable inputs use the G dependencies. $G 3$ is associated with the T input and $G 4$ with the P input of the count enable. The label associated with the clock is

$$
C 5 / 2,3,4+
$$

This means that the circuit counts up (the + symbol) when $M 2, G 3$, and $G 4$ are active $(\operatorname{load}=1, E N T=1$, and $E N P=1)$ and the clock in $C 5$ goes through a positive transition. This condition is specified in the function table of the 74161 listed in Fig. 9.15. The parallel inputs have the label $1,5 D$, meaning that the D inputs are active when $M 1$ is active $(\operatorname{load}=0)$ and the clock goes through a positive transition. The output carry is designated by the label

$$
3 C T=15
$$

This is interpreted to mean that the output carry is active (equal to 1) if $G 3$ is active $(E N T=1)$ and the content $(C T)$ of the counter is 15 (binary 1111). Note that the outputs
7.7 (a) 7×128 decoders, 256 AND gates (b) $x=46 ; y=112$
7.8
(a) 8 chips
(b) $18 ; 15$
(c) 3×8 decoder
7.100001101110111
7.11101110011001010
7.12
7.13
(a) 0101 1010;
(b) 1100 0110;
(c) 11110100
(a) 6
(b) 7
(c) 7
7.14 (a) 0101010
$7.16 \quad 24$ pins
7.20 Product terms: $y z^{\prime}, x z^{\prime}, x^{\prime} y^{\prime} z, x y^{\prime}, x^{\prime} y, z$
7.25 $A=y z^{\prime}+x z^{\prime}+x^{\prime} y^{\prime} z$
$B=x^{\prime} y^{\prime}+y z+y^{\prime} z^{\prime}$
$C=A+x y z$
$D=z+x^{\prime} y$

CHAPTER 8

8.1 (a) The transfer and increment occur concurrently, i.e., at the same clock edge. After the transfer, $R 2$ holds the contents that were in $R 1$ before the clock edge, and $R 2$ holds its previous value incremented by 1.
(b) Decrement the content of $R 3$ by one.
(c) If $\left(S_{1}=1\right)$, transfer content of $R 1$ to $R 0$. If ($S_{1}=0$ and $S_{2}=1$), transfer content of $R 2$ to $R 0$.
8.7 RTL notation:

S0: Initial state: if (start $=1$) then $\left(R A \leftarrow\right.$ data $_A, R B \leftarrow$ data $_B$, go to $\left.S 1\right)$.
S1: $\{$ Carry, $R A\} \leftarrow R A+(2$'s complement of $R B)$, go to $S 2$.
$S 2$: If (borrow $=0$) go to $S 0$. If (borrow $=1$) then $R A \leftarrow(2$'s complement of $R A$), go to $S 0$.

