Fundamentals of Electric Circuits Charles K. Alexander | Matthew N. O. Sadiku # **Chapter 1, Solution 1** (a) $$q = 6.482x10^{17} x [-1.602x10^{-19} C] = -103.84 mC$$ (b) $$q = 1.24 \times 10^{18} \text{ x } [-1.602 \times 10^{-19} \text{ C}] = -198.65 \text{ mC}$$ (c) $$q = 2.46x10^{19} x [-1.602x10^{-19} C] = -3.941 C$$ (d) $$q = 1.628 \times 10^{20} \times [-1.602 \times 10^{-19} \text{ C}] = -26.08 \text{ C}$$ # **Chapter 1, Solution 2** (a) $$i = dq/dt = 3 \text{ mA}$$ (b) $$i = dq/dt = (16t + 4) A$$ (b) $$i = dq/dt = (16t + 4) A$$ (c) $i = dq/dt = (-3e^{-t} + 10e^{-2t}) nA$ (d) $$i = dq/dt = 1200\pi \cos 120\pi t \text{ pA}$$ (e) $$i = dq/dt = -e^{-4t} (80 \cos 50t + 1000 \sin 50t) \mu A$$ $$\begin{split} R_{eq} &= 4 + 1.829 + (3.977 + 7.368) \big\| (0.5964 + 14) \\ &= 5.829 + 11.346 \big\| 14.5964 = \ \textbf{12.21} \ \boldsymbol{\Omega} \\ i &= 20/(R_{eq}) = \textbf{1.64} \ \boldsymbol{A} \end{split}$$ ### Chapter 4, Solution 16. Let $i_0 = i_{o1} + i_{o2} + i_{o3}$, where i_{o1} , i_{o2} , and i_{o3} are due to the 12-V, 4-A, and 2-A sources. For i_{o1} , consider the circuit below. $$10||(3+2+5)| = 5$$ ohms, $i_{o1} = 12/(5+4) = (12/9)$ A $$2+5+4||10\>=\>7+40/14\>=\>69/7\\i_1\>=\>[3/(3+69/7)]4\>=\>84/90,\;i_{o2}\>=[-10/(4+10)]i_1\>=\>-6/9$$ For i₀₃, consider the circuit below. $$3 + 2 + 4||10 = 5 + 20/7 = 55/7$$ $$i_2 \ = \ [5/(5+55/7)]2 \ = \ 7/9, \ i_{o3} \ = \ [-10/(10+4)]i_2 \ = \ -5/9$$ $$i_o = (12/9) - (6/9) - (5/9) = 1/9 = 111.11 \text{ mA}$$ $$(v_1-10m)/(10k) + v_1/30k + (v_1-3.87m)/20k = 0$$ or $$6v_1 - 60m + 2v_1 + 3v_1 - 11.61m = 0$$ or $$v_1 = 71.61/11 = 6.51 \text{ mV}.$$ The current through the 20k-ohm resistor, left to right, is, $$i_{20} = (6.51m - 3.87m)/20k = 132 \text{ x}10^{-9} \text{ A}$$ thus, $$v_o = 3.87m - 132 \times 10^{-9} \times 80k = -6.69 \text{ mV}.$$ # Chapter 7, Solution 30. (a) $$\int_{-\infty}^{\infty} 4t^2 \, \delta(t-1) \, dt = 4t^2 \big|_{t=1} = \mathbf{4}$$ (b) $$\int_{-\infty}^{\infty} 4t^2 \cos(2\pi t) \, \delta(t - 0.5) \, dt = 4t^2 \cos(2\pi t) \big|_{t = 0.5} = \cos \pi = -1$$ # Chapter 9, Solution 68. $$\mathbf{Y}_{eq} = \frac{1}{5 - j2} + \frac{1}{3 + j} + \frac{1}{-j4}$$ $$\boldsymbol{Y}_{eq} = (0.1724 + j0.069) + (0.3 - j0.1) + (j0.25)$$ $$Y_{eq} = (472.4 + j219) \text{ mS}$$ ### Chapter 10, Solution 60. (a) To find \mathbf{Z}_{eq} , consider the circuit in Fig. (a). $$\mathbf{Z}_{eq} = 4 \parallel (-j4 + 10 \parallel j5) = 4 \parallel (-j4 + 2 + j4)$$ $\mathbf{Z}_{eq} = 4 \parallel 2$ = 1.333 Ω To find $V_{\textit{Thev}}$, consider the circuit in Fig. (b). At node 1, $$\frac{20 - \mathbf{V}_1}{10} = \frac{\mathbf{V}_1}{j5} + \frac{\mathbf{V}_1 - \mathbf{V}_2}{-j4} (1 + j0.5) \mathbf{V}_1 - j2.5 \mathbf{V}_2 = 20$$ (1) At node 2, $$4 + \frac{\mathbf{V}_1 - \mathbf{V}_2}{-j4} = \frac{\mathbf{V}_2}{4}$$ $$\mathbf{V}_1 = (1-j)\mathbf{V}_2 + j16$$ (2) Substituting (2) into (1) leads to $$28 - j16 = (1.5 - j3) \mathbf{V}_2$$ $$\mathbf{V}_2 = \frac{28 - j16}{1.5 - j3} = 8 + j5.333$$ ### Chapter 11, Solution 34. $$f_{rms}^{2} = \frac{1}{T} \int_{0}^{T} f^{2}(t) dt = \frac{1}{3} \left[\int_{0}^{2} (3t)^{2} dt + \int_{2}^{3} 6^{2} dt \right]$$ $$= \frac{1}{3} \left[\frac{9t^{3}}{3} \Big|_{0}^{2} + 36 \right] = 20$$ $$f_{rms} = \sqrt{20} = 4.472$$ $$f_{rms} = 4.472$$ ### Chapter 19, Solution 5. Consider the circuit in Fig. (a). Consider the circuit in Fig. (b).