FIFTH EDITION

Fundamentals of Electric Circuits

Charles K. Alexander |Matthew N. O. Sadiku

Chapter 1, Solution 1

(a) $\mathrm{q}=6.482 \times 10^{17} \mathrm{x}\left[-1.602 \times 10^{-19} \mathrm{C}\right]=\mathbf{- 1 0 3 . 8 4} \mathbf{~ m C}$
(b) $\mathrm{q}=1.24 \times 10^{18} \times\left[-1.602 \times 10^{-19} \mathrm{C}\right]=-198.65 \mathrm{mC}$
(c) $\mathrm{q}=2.46 \times 10^{19} \times\left[-1.602 \times 10^{-19} \mathrm{C}\right]=-3.941 \mathrm{C}$
(d) $\mathrm{q}=1.628 \times 10^{20} \mathrm{x}\left[-1.602 \times 10^{-19} \mathrm{C}\right]=-26.08 \mathrm{C}$

Chapter 1, Solution 2

(a) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=3 \mathrm{~mA}$
(b) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=(16 \mathrm{t}+4) \mathrm{A}$
(c) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=\left(-3 \mathrm{e}^{-t}+10 \mathrm{e}^{-2 \mathrm{t}}\right) \mathrm{nA}$
(d) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=1200 \pi \cos 120 \pi t \mathrm{pA}$
(e) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=-e^{-4 t}(80 \cos 50 t+1000 \sin 50 t) \mu \mathbf{A}$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{eq}} & =4+1.829+(3.977+7.368) \|(0.5964+14) \\
& =5.829+11.346 \| 14.5964=\mathbf{1 2 . 2 1} \Omega \\
\mathrm{i}= & 20 /\left(\mathrm{R}_{\mathrm{eq}}\right)=\mathbf{1 . 6 4} \mathbf{~}
\end{aligned}
$$

Chapter 4, Solution 16.

Let $i_{0}=i_{01}+i_{02}+i_{03}$, where i_{01}, i_{02}, and i_{03} are due to the $12-\mathrm{V}, 4-\mathrm{A}$, and $2-\mathrm{A}$ sources. For i_{01}, consider the circuit below.

$$
10 \|(3+2+5)=5 \text { ohms, } \mathrm{i}_{01}=12 /(5+4)=(12 / 9) \mathrm{A}
$$

For $\mathrm{i}_{\mathrm{o} 2}$, consider the circuit below.

$$
2+5+4 \| 10=7+40 / 14=69 / 7
$$

$$
i_{1}=[3 /(3+69 / 7)] 4=84 / 90, i_{02}=[-10 /(4+10)] i_{1}=-6 / 9
$$

For i_{03}, consider the circuit below.

$$
\begin{gathered}
3+2+4 \| 10=5+20 / 7=55 / 7 \\
\mathrm{i}_{2}=[5 /(5+55 / 7)] 2=7 / 9, \mathrm{i}_{03}=[-10 /(10+4)] \mathrm{i}_{2}=-5 / 9 \\
\mathrm{i}_{0}=(12 / 9)-(6 / 9)-(5 / 9)=1 / 9=\mathbf{1 1 1 . 1 1 ~ \mathbf { m A }}
\end{gathered}
$$

$$
\left(\mathrm{v}_{1}-10 \mathrm{~m}\right) /(10 \mathrm{k})+\mathrm{v}_{1} / 30 \mathrm{k}+\left(\mathrm{v}_{1}-3.87 \mathrm{~m}\right) / 20 \mathrm{k}=0
$$

or

$$
6 v_{1}-60 m+2 v_{1}+3 v_{1}-11.61 m=0
$$

or

$$
\mathrm{v}_{1}=71.61 / 11=6.51 \mathrm{mV} .
$$

The current through the 20k-ohm resistor, left to right, is,

$$
\mathrm{i}_{20}=(6.51 \mathrm{~m}-3.87 \mathrm{~m}) / 20 \mathrm{k}=132 \times 10^{-9} \mathrm{~A}
$$

thus, $\quad \mathrm{v}_{\mathrm{o}}=3.87 \mathrm{~m}-132 \times 10^{-9} \mathrm{x} 80 \mathrm{k}=\mathbf{- 6 . 6 9} \mathbf{~ m V}$.

Chapter 7, Solution 30.

(a) $\int_{-\infty}^{\infty} 4 \mathrm{t}^{2} \delta(\mathrm{t}-1) \mathrm{dt}=\left.4 \mathrm{t}^{2}\right|_{\mathrm{t}=1}=4$
(b) $\quad \int_{-\infty}^{\infty} 4 \mathrm{t}^{2} \cos (2 \pi \mathrm{t}) \delta(\mathrm{t}-0.5) \mathrm{dt}=\left.4 \mathrm{t}^{2} \cos (2 \pi \mathrm{t})\right|_{\mathrm{t}=0.5}=\cos \pi=\mathbf{- 1}$

Chapter 9, Solution 68.

$$
\begin{aligned}
& \mathbf{Y}_{\mathrm{eq}}=\frac{1}{5-\mathrm{j} 2}+\frac{1}{3+\mathrm{j}}+\frac{1}{-\mathrm{j} 4} \\
& \mathbf{Y}_{\mathrm{eq}}=(0.1724+\mathrm{j} 0.069)+(0.3-\mathrm{j} 0.1)+(\mathrm{j} 0.25) \\
& \mathbf{Y}_{\text {eq }}=(\mathbf{4 7 2 . 4}+\mathbf{j} 219) \mathbf{m S}
\end{aligned}
$$

Chapter 10, Solution 60.

(a) To find $\mathbf{Z}_{e q}$, consider the circuit in Fig. (a).

(a)

$$
\begin{aligned}
& \mathbf{Z}_{e q}=4\|(-j 4+10 \| j 5)=4\|(-j 4+2+j 4) \\
& \mathbf{Z}_{e q}=4 \| 2
\end{aligned}
$$

$$
=1.333 \Omega
$$

To find $\mathbf{V}_{\text {Thev }}$, consider the circuit in Fig. (b).

(b)

At node 1,

$$
\begin{align*}
& \frac{20-\mathbf{V}_{1}}{10}=\frac{\mathbf{V}_{1}}{j 5}+\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{-j 4} \\
& (1+\mathrm{j} 0.5) \mathbf{V}_{1}-\mathrm{j} 2.5 \mathbf{V}_{2}=20 \tag{1}
\end{align*}
$$

At node 2,

$$
\begin{align*}
& 4+\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{-j 4}=\frac{\mathbf{V}_{2}}{4} \\
& \mathbf{V}_{1}=(1-j) \mathbf{V}_{2}+j 16 \tag{2}
\end{align*}
$$

Substituting (2) into (1) leads to

$$
\begin{aligned}
& 28-j 16=(1.5-j 3) \mathbf{V}_{2} \\
& \mathbf{V}_{2}=\frac{28-j 16}{1.5-j 3}=8+j 5.333
\end{aligned}
$$

Chapter 11, Solution 34.

$$
\begin{aligned}
& f_{r m s}^{2}=\frac{1}{T} \int_{0}^{T} f^{2}(t) d t=\frac{1}{3}\left[\int_{0}^{2}(3 t)^{2} d t+\int_{2}^{3} 6^{2} d t\right] \\
& =\frac{1}{3}\left[\left.\frac{9 t^{3}}{3}\right|_{0} ^{2}+36\right]=20 \\
& f_{r m s}=\sqrt{20}=4.472
\end{aligned}
$$

$$
\mathrm{f}_{\mathrm{rms}}=4.472
$$

Chapter 19, Solution 5.

Consider the circuit in Fig. (a).

(a)

$$
\begin{aligned}
& \mathbf{z}_{11}=1\left\|\frac{1}{\mathrm{~s}}\right\|\left(1+\mathrm{s}+\frac{1}{\mathrm{~s}}\right)=\frac{\frac{1}{\mathrm{~s}}}{1+\frac{1}{\mathrm{~s}}} \|\left(1+\mathrm{s}+\frac{1}{\mathrm{~s}}\right)=\frac{\left(\frac{1}{\mathrm{~s}+1}\right)\left(1+\mathrm{s}+\frac{1}{\mathrm{~s}}\right)}{\left(\frac{1}{\mathrm{~s}+1}\right)+1+\mathrm{s}+\frac{1}{\mathrm{~s}}} \\
& \mathbf{z}_{11}=\frac{\mathrm{s}^{2}+\mathrm{s}+1}{\mathrm{~s}^{3}+2 \mathrm{~s}^{2}+3 \mathrm{~s}+1} \\
& \mathbf{I}_{\mathrm{o}}=\frac{1 \| \frac{1}{\mathrm{~s}}}{1 \| \frac{1}{\mathrm{~s}}+1+\mathrm{s}+\frac{1}{\mathrm{~s}}} \mathbf{I}_{1}=\frac{\frac{1}{\mathrm{~s}+1}}{\frac{1}{\mathrm{~s}+1}+1+\mathrm{s}+\frac{1}{\mathrm{~s}}} \mathbf{I}_{1}=\frac{\frac{\mathrm{s}}{\mathrm{~s}+1}}{\frac{\mathrm{~s}}{\mathrm{~s}+1}+\mathrm{s}^{2}+\mathrm{s}+1} \mathbf{I}_{1} \\
& \mathbf{I}_{\mathrm{o}}=\frac{\mathrm{s}}{\mathrm{~s}^{3}+2 \mathrm{~s}^{2}+3 \mathrm{~s}+1} \mathbf{I}_{1} \\
& \mathbf{V}_{2}=\frac{1}{\mathrm{~s}} \mathbf{I}_{\mathrm{o}}=\frac{\mathbf{I}_{1}}{\mathrm{~s}^{3}+2 \mathrm{~s}^{2}+3 \mathrm{~s}+1} \\
& \mathbf{z}_{21}=\frac{\mathbf{V}_{2}}{\mathbf{I}_{1}}=\frac{1}{\mathrm{~s}^{3}+2 \mathrm{~s}^{2}+3 \mathrm{~s}+1}
\end{aligned}
$$

Consider the circuit in Fig. (b).

(b)

