
Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

Data	Structures
And

Algorithms
Made	Easy

-To	All	My	Readers

By
Narasimha	Karumanchi

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

Copyright©	2017	by	CareerMonk.com

All	rights	reserved.
Designed	by	Narasimha	Karumanchi

Copyright©	2017	CareerMonk	Publications.	All	rights	reserved.

All	rights	reserved.	No	part	of	this	book	may	be	reproduced	in	any	form	or	by	any	electronic	or	mechanical	means,	including
information	storage	and	retrieval	systems,	without	written	permission	from	the	publisher	or	author.

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

http://CareerMonk.com

Acknowledgements

Mother	and	Father,	it	is	impossible	to	thank	you	adequately	for	everything	you	have	done,	from
loving	me	unconditionally	to	raising	me	in	a	stable	household,	where	your	persistent	efforts	and
traditional	values	taught	your	children	to	celebrate	and	embrace	life.	I	could	not	have	asked	for
better	parents	or	role-models.	You	showed	me	that	anything	is	possible	with	faith,	hard	work	and
determination.

This	book	would	not	have	been	possible	without	the	help	of	many	people.	I	would	like	to	express
my	gratitude	to	all	of	the	people	who	provided	support,	talked	things	over,	read,	wrote,	offered
comments,	allowed	me	to	quote	their	remarks	and	assisted	in	the	editing,	proofreading	and	design.
In	particular,	I	would	like	to	thank	the	following	individuals:

▪ Mohan	Mullapudi,	IIT	Bombay,	Architect,	dataRPM	Pvt.	Ltd.
▪ Navin	Kumar	Jaiswal,	Senior	Consultant,	Juniper	Networks	Inc.
▪ A.	Vamshi	Krishna,	IIT	Kanpur,	Mentor	Graphics	Inc.
▪ Cathy	Reed,	BA,	MA,	Copy	Editor

–Narasimha	Karumanchi
M-Tech,	IIT	Bombay

Founder,	CareerMonk.com

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

http://CareerMonk.com

Preface

Dear	Reader,

Please	hold	on!	I	know	many	people	typically	do	not	read	the	Preface	of	a	book.	But	I	strongly
recommend	that	you	read	this	particular	Preface.

It	 is	 not	 the	main	 objective	 of	 this	 book	 to	 present	 you	with	 the	 theorems	 and	 proofs	 on	data
structures	 and	algorithms.	 I	 have	 followed	 a	 pattern	 of	 improving	 the	 problem	 solutions	with
different	 complexities	 (for	 each	 problem,	 you	 will	 find	 multiple	 solutions	 with	 different,	 and
reduced,	complexities).	Basically,	it’s	an	enumeration	of	possible	solutions.	With	this	approach,
even	if	you	get	a	new	question,	it	will	show	you	a	way	to	think	about	the	possible	solutions.	You
will	find	this	book	useful	for	interview	preparation,	competitive	exams	preparation,	and	campus
interview	preparations.

As	 a	 job	 seeker,	 if	 you	 read	 the	 complete	 book,	 I	 am	 sure	 you	will	 be	 able	 to	 challenge	 the
interviewers.	If	you	read	it	as	an	instructor,	it	will	help	you	to	deliver	lectures	with	an	approach
that	is	easy	to	follow,	and	as	a	result	your	students	will	appreciate	the	fact	that	they	have	opted	for
Computer	Science	/	Information	Technology	as	their	degree.

This	book	 is	also	useful	 for	Engineering	degree	students	 and	Masters	 degree	 students	 during
their	 academic	 preparations.	 In	 all	 the	 chapters	 you	 will	 see	 that	 there	 is	 more	 emphasis	 on
problems	and	 their	analysis	 rather	 than	on	 theory.	 In	each	chapter,	you	will	 first	 read	about	 the
basic	 required	 theory,	which	 is	 then	 followed	by	 a	 section	 on	problem	 sets.	 In	 total,	 there	 are
approximately	700	algorithmic	problems,	all	with	solutions.

If	 you	 read	 the	 book	 as	 a	 student	 preparing	 for	 competitive	 exams	 for	 Computer	 Science	 /
Information	Technology,	 the	content	covers	all	 the	required	 topics	 in	 full	 detail.	While	writing
this	book,	my	main	focus	was	to	help	students	who	are	preparing	for	these	exams.

In	all	the	chapters	you	will	see	more	emphasis	on	problems	and	analysis	rather	than	on	theory.	In
each	chapter,	you	will	first	see	the	basic	required	theory	followed	by	various	problems.

For	many	problems,	multiple	solutions	are	provided	with	different	levels	of	complexity.	We	start
with	the	brute	force	solution	and	slowly	move	toward	the	best	solution	possible	for	that	problem.
For	each	problem,	we	endeavor	to	understand	how	much	time	the	algorithm	takes	and	how	much
memory	the	algorithm	uses.

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

It	is	recommended	that	the	reader	does	at	least	one	complete	 reading	of	this	book	to	gain	a	full
understanding	 of	 all	 the	 topics	 that	 are	 covered.	 Then,	 in	 subsequent	 readings	 you	 can	 skip
directly	to	any	chapter	to	refer	to	a	specific	topic.	Even	though	many	readings	have	been	done	for
the	 purpose	 of	 correcting	 errors,	 there	 could	 still	 be	 some	minor	 typos	 in	 the	 book.	 If	 any	 are
found,	 they	 will	 be	 updated	 at	 www.CareerMonk.com.	 You	 can	 monitor	 this	 site	 for	 any
corrections	 and	 also	 for	 new	 problems	 and	 solutions.	 Also,	 please	 provide	 your	 valuable
suggestions	at:	Info@CareerMonk.com.

I	wish	you	all	the	best	and	I	am	confident	that	you	will	find	this	book	useful.

–Narasimha	Karumanchi
M-Tech,	I	IT	Bombay

Founder,	CareerMonk.com

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

http://www.CareerMonk.com
mailto:Info@CareerMonk.com
http://CareerMonk.com

Other	Books	by	Narasimha	Karumanchi

IT	Interview	Questions

Data	Structures	and	Algorithms	for	GATE

Data	Structures	and	Aigorithms	Made	Easy	in	Java

Coding	Interview	Questions

Peeling	Design	Patterns

Elements	of	Computer	Networking

Data	Structures	and	Algorithmic	Thinking	with	Python

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

Table	of	Contents

1.			Introduction
1.1 Variables
1.2 Data	Types
1.3 Data	Structures
1.4 Abstract	Data	Types	(ADTs)
1.5 What	is	an	Algorithm?
1.6 Why	the	Analysis	of	Algorithms?
1.7 Goal	of	the	Analysis	of	Algorithms
1.8 What	is	Running	Time	Analysis?
1.9 How	to	Compare	Algorithms
1.10 What	is	Rate	of	Growth?
1.11 Commonly	Used	Rates	of	Growth
1.12 Types	of	Analysis
1.13 Asymptotic	Notation
1.14 Big-O	Notation	[Upper	Bounding	Function]
1.15 Omega-Q	Notation	[Lower	Bounding	Function]
1.16 Theta-Θ	Notation	[Order	Function]
1.17 Important	Notes
1.18 Why	is	it	called	Asymptotic	Analysis?
1.19 Guidelines	for	Asymptotic	Analysis
1.20 Simplyfying	properties	of	asymptotic	notations
1.21 Commonly	used	Logarithms	and	Summations
1.22 Master	Theorem	for	Divide	and	Conquer	Recurrences
1.23 Divide	and	Conquer	Master	Theorem:	Problems	&	Solutions
1.24 Master	Theorem	for	Subtract	and	Conquer	Recurrences
1.25 Variant	of	Subtraction	and	Conquer	Master	Theorem
1.26 Method	of	Guessing	and	Confirming

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

1.27 Amortized	Analysis
1.28 Algorithms	Analysis:	Problems	&	Solutions

2.			Recursion	and	Backtracking
2.1 Introduction
2.2 What	is	Recursion?
2.3 Why	Recursion?
2.4 Format	of	a	Recursive	Function
2.5 Recursion	and	Memory	(Visualization)
2.6 Recursion	versus	Iteration
2.7 Notes	on	Recursion
2.8 Example	Algorithms	of	Recursion
2.9 Recursion:	Problems	&	Solutions
2.10 What	is	Backtracking?
2.11 Example	Algorithms	of	Backtracking
2.12 Backtracking:	Problems	&	Solutions

3.			Linked	Lists
3.1 What	is	a	Linked	List?
3.2 Linked	Lists	ADT
3.3 Why	Linked	Lists?
3.4 Arrays	Overview
3.5 Comparison	of	Linked	Lists	with	Arrays	&	Dynamic	Arrays
3.6 Singly	Linked	Lists
3.7 Doubly	Linked	Lists
3.8 Circular	Linked	Lists
3.9 A	Memory-efficient	Doubly	Linked	List
3.10 Unrolled	Linked	Lists
3.11 Skip	Lists
3.12 Linked	Lists:	Problems	&	Solutions

4.			Stacks
4.1 What	is	a	Stack?
4.2 How	Stacks	are	used
4.3 Stack	ADT

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

4.4 Applications
4.5 Implementation
4.6 Comparison	of	Implementations
4.7 Stacks:	Problems	&	Solutions

5.			Queues
5.1 What	is	a	Queue?
5.2 How	are	Queues	Used?
5.3 Queue	ADT
5.4 Exceptions
5.5 Applications
5.6 Implementation
5.7 Queues:	Problems	&	Solutions

6.			Trees
6.1 What	is	a	Tree?
6.2 Glossary
6.3 Binary	Trees
6.4 Types	of	Binary	Trees
6.5 Properties	of	Binary	Trees
6.6 Binary	Tree	Traversals
6.7 Generic	Trees	(N-ary	Trees)
6.8 Threaded	Binary	Tree	Traversals	(Stack	or	Queue-less	Traversals)
6.9 Expression	Trees
6.10 XOR	Trees
6.11 Binary	Search	Trees	(BSTs)
6.12 Balanced	Binary	Search	Trees
6.13 AVL	(Adelson-Velskii	and	Landis)	Trees
6.14 Other	Variations	on	Trees

7.			Priority	Queues	and	Heaps
7.1 What	is	a	Priority	Queue?
7.2 Priority	Queue	ADT
7.3 Priority	Queue	Applications
7.4 Priority	Queue	Implementations

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

7.5 Heaps	and	Binary	Heaps
7.6 Binary	Heaps
7.7 Heapsort
7.8 Priority	Queues	[Heaps]:	Problems	&	Solutions

8.			Disjoint	Sets	ADT
8.1 Introduction
8.2 Equivalence	Relations	and	Equivalence	Classes
8.3 Disjoint	Sets	ADT
8.4 Applications
8.5 Tradeoffs	in	Implementing	Disjoint	Sets	ADT
8.8 Fast	UNION	Implementation	(Slow	FIND)
8.9 Fast	UNION	Implementations	(Quick	FIND)
8.10 Summary
8.11 Disjoint	Sets:	Problems	&	Solutions

9.			Graph	Algorithms
9.1 Introduction
9.2 Glossary
9.3 Applications	of	Graphs
9.4 Graph	Representation
9.5 Graph	Traversals
9.6 Topological	Sort
9.7 Shortest	Path	Algorithms
9.8 Minimal	Spanning	Tree
9.9 Graph	Algorithms:	Problems	&	Solutions

10.		Sorting
10.1 What	is	Sorting?
10.2 Why	is	Sorting	Necessary?
10.3 Classification	of	Sorting	Algorithms
10.4 Other	Classifications
10.5 Bubble	Sort
10.6 Selection	Sort
10.7 Insertion	Sort

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

10.8 Shell	Sort
10.9 Merge	Sort
10.10 Heap	Sort
10.11 Quick	Sort
10.12 Tree	Sort
10.13 Comparison	of	Sorting	Algorithms
10.14 Linear	Sorting	Algorithms
10.15 Counting	Sort
10.16 Bucket	Sort	(or	Bin	Sort)
10.17 Radix	Sort
10.18 Topological	Sort
10.19 External	Sorting
10.20 Sorting:	Problems	&	Solutions

11.		Searching
11.1 What	is	Searching?
11.2 Why	do	we	need	Searching?
11.3 Types	of	Searching
11.4 Unordered	Linear	Search
11.5 Sorted/Ordered	Linear	Search
11.6 Binary	Search
11.7 Interpolation	Search
11.8 Comparing	Basic	Searching	Algorithms
11.9 Symbol	Tables	and	Hashing
11.10 String	Searching	Algorithms
11.11 Searching:	Problems	&	Solutions

12.		Selection	Algorithms	[Medians]
12.1 What	are	Selection	Algorithms?
12.2 Selection	by	Sorting
12.3 Partition-based	Selection	Algorithm
12.4 Linear	Selection	Algorithm	-	Median	of	Medians	Algorithm
12.5 Finding	the	K	Smallest	Elements	in	Sorted	Order
12.6 Selection	Algorithms:	Problems	&	Solutions

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

13.		Symbol	Tables
13.1 Introduction
13.2 What	are	Symbol	Tables?
13.3 Symbol	Table	Implementations
13.4 Comparison	Table	of	Symbols	for	Implementations

14.		Hashing
14.1 What	is	Hashing?
14.2 Why	Hashing?
14.3 HashTable	ADT
14.4 Understanding	Hashing
14.5 Components	of	Hashing
14.6 Hash	Table
14.7 Hash	Function
14.8 Load	Factor
14.9 Collisions
14.10 Collision	Resolution	Techniques
14.11 Separate	Chaining
14.12 Open	Addressing
14.13 Comparison	of	Collision	Resolution	Techniques
14.14 How	Hashing	Gets	O(1)	Complexity?
14.15 Hashing	Techniques
14.16 Problems	for	which	Hash	Tables	are	not	suitable
14.17 Bloom	Filters
14.18 Hashing:	Problems	&	Solutions

15.		String	Algorithms
15.1 Introduction
15.2 String	Matching	Algorithms
15.3 Brute	Force	Method
15.4 Rabin-Karp	String	Matching	Algorithm
15.5 String	Matching	with	Finite	Automata
15.6 KMP	Algorithm
15.7 Boyer-Moore	Algorithm

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

15.8 Data	Structures	for	Storing	Strings
15.9 Hash	Tables	for	Strings
15.10 Binary	Search	Trees	for	Strings
15.11 Tries
15.12 Ternary	Search	Trees
15.13 Comparing	BSTs,	Tries	and	TSTs
15.14 Suffix	Trees
15.15 String	Algorithms:	Problems	&	Solutions

16.		Algorithms	Design	Techniques
16.1 Introduction
16.2 Classification
16.3 Classification	by	Implementation	Method
16.4 Classification	by	Design	Method
16.5 Other	Classifications

17.		Greedy	Algorithms
17.1 Introduction
17.2 Greedy	Strategy
17.3 Elements	of	Greedy	Algorithms
17.4 Does	Greedy	Always	Work?
17.5 Advantages	and	Disadvantages	of	Greedy	Method
17.6 Greedy	Applications
17.7 Understanding	Greedy	Technique
17.8 Greedy	Algorithms:	Problems	&	Solutions

18.		Divide	and	Conquer	Algorithms
18.1 Introduction
18.2 What	is	the	Divide	and	Conquer	Strategy?
18.3 Does	Divide	and	Conquer	Always	Work?
18.4 Divide	and	Conquer	Visualization
18.5 Understanding	Divide	and	Conquer
18.6 Advantages	of	Divide	and	Conquer
18.7 Disadvantages	of	Divide	and	Conquer
18.8 Master	Theorem

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

18.9 Divide	and	Conquer	Applications
18.10 Divide	and	Conquer:	Problems	&	Solutions

19.		Dynamic	Programming
19.1 Introduction
19.2 What	is	Dynamic	Programming	Strategy?
19.3 Properties	of	Dynamic	Programming	Strategy
19.4 Can	Dynamic	Programming	Solve	All	Problems?
19.5 Dynamic	Programming	Approaches
19.6 Examples	of	Dynamic	Programming	Algorithms
19.7 Understanding	Dynamic	Programming
19.8 Longest	Common	Subsequence
19.9 Dynamic	Programming:	Problems	&	Solutions

20.		Complexity	Classes
20.1 Introduction
20.2 Polynomial/Exponential	Time
20.3 What	is	a	Decision	Problem?
20.4 Decision	Procedure
20.5 What	is	a	Complexity	Class?
20.6 Types	of	Complexity	Classes
20.7 Reductions
20.8 Complexity	Classes:	Problems	&	Solutions

21.		Miscellaneous	Concepts
21.1 Introduction
21.2 Hacks	on	Bit-wise	Programming
21.3 Other	Programming	Questions

References

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

• Update	the	next	pointer	of	the	previous	node	to	point	to	the	new	node	and	we	get	the
list	as	shown	below.

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-13  Give	an	algorithm	for	deleting	an	element	(assuming	data	is	given)	from	binary
tree.

Solution:	The	deletion	of	a	node	in	binary	tree	can	be	implemented	as

• Starting	at	root,	find	the	node	which	we	want	to	delete.
• Find	the	deepest	node	in	the	tree.
• Replace	the	deepest	node’s	data	with	node	to	be	deleted.
• Then	delete	the	deepest	node.

Problem-14  Give	 an	 algorithm	 for	 finding	 the	 number	 of	 leaves	 in	 the	 binary	 tree	without
using	recursion.

Solution:	The	set	of	nodes	whose	both	left	and	right	children	are	NULL	are	called	leaf	nodes.

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

one	position.	For	example:	The	array	is	[1	3	-1	-3	5	3	6	7],	and	w	is	3.

Window	position Max

[1	3	-1]	-3	5	3	6	7 3

1	[3	-1	-3]	5	3	6	7 3

1	3	[-1	-3	5]	3	6	7 5

1	3	-1	[-3	5	3]	6	7 5

1	3	-1	-3	[5	3	6]	7 6

1	3	-1	-3	5	[3	6	7] 7

Input:	 A	 long	 array	 A[],	 and	 a	 window	 width	 w.	Output:	 An	 array	 B[],	 B[i]	 is	 the
maximum	value	of	from	A[i]	to	A[i+w-1]
Requirement:	Find	a	good	optimal	way	to	get	B[i]

Solution:	Brute	force	solution	is,	every	time	the	window	is	moved	we	can	search	for	a	total	of	w
elements	in	the	window.

Time	complexity:	O(nw).

Problem-29  For	Problem-28,	can	we	reduce	the	complexity?

Solution:	Yes,	we	 can	 use	 heap	 data	 structure.	This	 reduces	 the	 time	 complexity	 to	O(nlogw).
Insert	 operation	 takes	 O(logw)	 time,	 where	 w	 is	 the	 size	 of	 the	 heap.	 However,	 getting	 the
maximum	value	is	cheap;	it	merely	takes	constant	time	as	the	maximum	value	is	always	kept	in	the
root	(head)	of	the	heap.	As	the	window	slides	to	the	right,	some	elements	in	the	heap	might	not	be
valid	anymore	(range	is	outside	of	the	current	window).	How	should	we	remove	them?	We	would
need	to	be	somewhat	careful	here.	Since	we	only	remove	elements	that	are	out	of	the	window’s
range,	we	would	need	to	keep	track	of	the	elements’	indices	too.

Problem-30  For	Problem-28,	can	we	further	reduce	the	complexity?

Solution:	Yes,	The	double-ended	queue	is	the	perfect	data	structure	for	this	problem.	It	supports
insertion/deletion	from	the	front	and	back.	The	trick	is	to	find	a	way	such	that	the	largest	element
in	 the	 window	would	 always	 appear	 in	 the	 front	 of	 the	 queue.	 How	would	 you	maintain	 this
requirement	as	you	push	and	pop	elements	in	and	out	of	the	queue?

Besides,	you	will	notice	 that	 there	are	some	redundant	elements	 in	 the	queue	 that	we	shouldn’t
even	consider.	For	example,	if	the	current	queue	has	the	elements:	[10	5	3],	and	a	new	element	in
the	 window	 has	 the	 element	 11.	 Now,	 we	 could	 have	 emptied	 the	 queue	 without	 considering
elements	10,	5,	and	3,	and	insert	only	element	11	into	the	queue.

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

• For	each	element	of	the	input	array,	insert	into	the	hash	table.	Let	us	say	the	current
element	is	A[X].

• Check	whether	there	exists	a	hash	entry	in	the	table	with	key:	K	–	A[X].
• If	such	element	exists	then	scan	the	element	pairs	of	K	–	A[X]	and	return	all	possible

pairs	by	including	A[X]	also.
• If	no	such	element	exists	(with	K	–	A[X]	as	key)	then	go	to	next	element.

Time	Complexity:	The	 time	 for	 storing	 all	 possible	pairs	 in	Hash	 table	+	 searching	=	O(n2)	 +
O(n2)	≈	O(n2).	Space	Complexity:	O(n).

Problem-36  Given	an	array	of	n	integers,	the	3	–	sum	problem	is	to	find	three	integers	whose
sum	is	closest	to	zero.

Solution:	This	is	the	same	as	that	of	Problem-32	with	K	value	is	zero.

Problem-37  Let	A	be	an	array	of	n	distinct	integers.	Suppose	A	has	the	following	property:
there	exists	an	index	1	≤	k	≤	n	such	that	A[l],...,	A[k]	is	an	increasing	sequence	and	A[k	+
1],...,	A[n]	is	a	decreasing	sequence.	Design	and	analyze	an	efficient	algorithm	for	finding
k.
Similar	 question:	 Let	 us	 assume	 that	 the	 given	 array	 is	 sorted	 but	 starts	 with	 negative
numbers	 and	 ends	 with	 positive	 numbers	 [such	 functions	 are	 called	 monotonically
increasing	functions].	In	this	array	find	the	starting	index	of	the	positive	numbers.	Assume
that	we	know	the	length	of	the	input	array.	Design	a	O(logn)	algorithm.

Solution:	Let	us	use	a	variant	of	the	binary	search.

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

The	set	of	problems	that	are	NP-hard	is	a	strict	superset	of	the	problems	that	are	NP-complete.
Some	problems	(like	the	halting	problem)	are	NP-hard,	but	not	in	NP.	NP-hard	problems	might	be
impossible	to	solve	in	general.	We	can	tell	the	difference	in	difficulty	between	NP-hard	and	NP-
complete	problems	because	the	class	NP	includes	everything	easier	than	its	“toughest”	problems	-
if	a	problem	is	not	in	NP,	it	is	harder	than	all	the	problems	in	NP.

Does	P==NP?

If	 P	 =	 NP,	 it	 means	 that	 every	 problem	 that	 can	 be	 checked	 quickly	 can	 be	 solved	 quickly
(remember	the	difference	between	checking	if	an	answer	is	right	and	actually	solving	a	problem).

This	is	a	big	question	(and	nobody	knows	the	answer),	because	right	now	there	are	lots	of	NP-
complete	problems	 that	can’t	be	solved	quickly.	 If	P	=	NP,	 that	means	 there	 is	a	way	 to	solve
them	fast.	Remember	that	“quickly”	means	not	trial-and-error.	It	could	take	a	billion	years,	but	as
long	as	we	didn’t	use	trial	and	error,	it	was	quick.	In	future,	a	computer	will	be	able	to	change
that	billion	years	into	a	few	minutes.

20.7	Reductions

Before	 discussing	 reductions,	 let	 us	 consider	 the	 following	 scenario.	 Assume	 that	 we	want	 to
solve	problem	X	but	feel	it’s	very	complicated.	In	this	case	what	do	we	do?

The	first	thing	that	comes	to	mind	is,	if	we	have	a	similar	problem	to	that	of	X	(let	us	say	Y),	then
we	try	to	map	X	to	Y	and	use	Y’s	solution	to	solve	X	also.	This	process	is	called	reduction.

Full file at https://buklibry.com/download/solutions-manual-data-structures-and-algorithms-made-easy-in-java-data-structure-and-algorithmic-puzzles/

Download full file from buklibry.com

	Title Page
	Copyright Page
	Acknowledgements
	Preface
	Other Books by Narasimha Karumanchi
	Table of Contents
	20.7 Reductions

