Borgnakke Sonntag

Fundamentals of Thermodynamics

SOLUTION MANUAL CHAPTER 1

CONTENT CHAPTER 1

SUBSECTION

Concept Problems
Properties, Units and Force
Specific Volume
Pressure
Manometers and Barometers
Energy and Temperature
Review problems

PROB NO.

1-21
22-37
38-44
45-61
62-83
84-95
96-101

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

In-Text Concept Questions

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

1.87

A car of mass 1775 kg travels with a velocity of $100 \mathrm{~km} / \mathrm{h}$. Find the kinetic energy. How high should it be lifted in the standard gravitational field to have a potential energy that equals the kinetic energy?

Solution:

Standard kinetic energy of the mass is

$$
\begin{aligned}
\mathrm{KE}= & 1 / 2 \mathrm{~m} \mathrm{~V}^{2}=1 / 2 \times 1775 \mathrm{~kg} \times\left(\frac{100 \times 1000}{3600}\right)^{2} \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& =1 / 2 \times 1775 \times 27.778 \mathrm{Nm}=684800 \mathrm{~J} \\
& =\mathbf{6 8 4 . 8} \mathbf{~ k J}
\end{aligned}
$$

Standard potential energy is
POT = mgh

$$
\mathrm{h}=1 / 2 \mathrm{~m} \mathrm{~V} \text { 2 } / \mathrm{mg}=\frac{684800 \mathrm{Nm}}{1775 \mathrm{~kg} \times 9.807 \mathrm{~m} / \mathrm{s}^{2}}=39.3 \mathrm{~m}
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

You want a pot of water to boil at $105^{\circ} \mathrm{C}$. How heavy a lid should you put on the 15 cm diameter pot when $\mathrm{P}_{\mathrm{atm}}=101 \mathrm{kPa}$?

Solution:

Table B.1.1 at $105^{\circ} \mathrm{C}: \quad \mathrm{P}_{\text {sat }}=120.8 \mathrm{kPa}$

$$
\begin{aligned}
& \mathrm{A}=\frac{\pi}{4} \mathrm{D}^{2}=\frac{\pi}{4} 0.15^{2}=0.01767 \mathrm{~m}^{2} \\
& \mathrm{~F}_{\text {net }}=\left(\mathrm{P}_{\text {sat }}-\mathrm{P}_{\mathrm{atm}}\right) \mathrm{A}=(120.8-101) \mathrm{kPa} \times 0.01767 \mathrm{~m}^{2} \\
& =0.3498 \mathrm{kN}=350 \mathrm{~N} \\
& F_{\text {net }}=m_{\text {lid }} g \\
& \mathrm{~m}_{\text {lid }}=\mathrm{F}_{\text {net }} / \mathrm{g}=\frac{350}{9.807} \frac{\mathrm{~N}}{\mathrm{~m} / \mathrm{s}^{2}}=\mathbf{3 5 . 7} \mathbf{~ k g}
\end{aligned}
$$

Some lids are clamped on, the problem deals with one that stays on due to its weight.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

3.132

We want to find the change in u for carbon dioxide between $50^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$ at a pressure of 10 MPa. Find it using ideal gas and Table A. 5 and repeat using the B section table.

Solution:
Using the value of C_{vo} for CO_{2} from Table A.5,
$\Delta \mathrm{u}=\mathrm{C}_{\mathrm{vo}} \Delta \mathrm{T}=0.653 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \times(200-50) \mathrm{K}=\mathbf{9 7 . 9 5} \mathbf{~ k J} / \mathbf{k g}$
Using values of u from Table B3.2 at 10000 kPa , with linear interpolation between $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ for the $50^{\circ} \mathrm{C}$ value,

$$
\Delta u=u_{200}-u_{50}=437.6-230.9=206.7 \mathbf{k J} / \mathbf{k g}
$$

Note: Since the state $50^{\circ} \mathrm{C}, 10000 \mathrm{kPa}$ is in the dense-fluid supercritical region, a linear interpolation is quite inaccurate. The proper value for u at this state is found from the CATT software to be 245.1 instead of 230.9. This results is

$$
\Delta u=u_{200}-u_{50}=437.6-245.1=192.5 \mathbf{k J} / \mathbf{k g}
$$

5.53

Find the maximum coefficient of performance for the refrigerator in your kitchen, assuming it runs in a Carnot cycle.

Solution:

The refrigerator coefficient of performance is

$$
\beta=\mathrm{Q}_{\mathrm{L}} / \mathrm{W}=\mathrm{Q}_{\mathrm{L}} /\left(\mathrm{Q}_{\mathrm{H}}-\mathrm{Q}_{\mathrm{L}}\right)=\mathrm{T}_{\mathrm{L}} /\left(\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{L}}\right)
$$

Assuming $\quad \mathrm{T}_{\mathrm{L}} \sim 0^{\circ} \mathrm{C}, \quad \mathrm{T}_{\mathrm{H}} \sim 35^{\circ} \mathrm{C}$,

$$
\beta \leq \frac{273.15}{35-0}=7.8
$$

Actual working fluid temperatures must be such that

$$
\mathrm{T}_{\mathrm{L}}<\mathrm{T}_{\text {refrigerator }} \text { and } \mathrm{T}_{\mathrm{H}}>\mathrm{T}_{\text {room }}
$$

A refrigerator does not operate in a Carnot cycle. The actual vapor compression cycle is examined in Chapter 9.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

7.86

A compressor in a commercial refrigerator receives R-410A at $-25^{\circ} \mathrm{C}$ and $\mathrm{x}=1$. The exit is at 1000 kPa and $20^{\circ} \mathrm{C}$. Is this compressor possible?

Solution:

C.V. Compressor, steady state, single inlet and exit flow. For this device we also assume no heat transfer and $\mathrm{Z}_{\mathrm{i}}=\mathrm{Z}_{\mathrm{e}}$

From Table B.4.1 : $\quad h_{i}=269.77 \mathrm{~kJ} / \mathrm{kg}, \mathrm{s}_{\mathrm{i}}=1.0893 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
From Table B.4.2 : $\quad h_{e}=295.49 \mathrm{~kJ} / \mathrm{kg}, \mathrm{s}_{\mathrm{e}}=1.073 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
Entropy gives

$$
\mathrm{s}_{\text {gen }}=\mathrm{s}_{\mathrm{e}}-\mathrm{s}_{\mathrm{i}}-\int \mathrm{dq} / \mathrm{T}=1.073-1.0893-\int \mathrm{dq} / \mathrm{T}=\text { negative }
$$

The result is negative unless dq is negative (it should go out, but $\mathrm{T}<\mathrm{T}$ ambient) so this compressor is impossible

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

Borgnakke and Sonntag

9.99

A refrigerator has a steady flow of R-410A as saturated vapor at $-20^{\circ} \mathrm{C}$ into the adiabatic compressor that brings it to 1400 kPa . After the compressor, the temperature is measured to be $60^{\circ} \mathrm{C}$. Find the actual compressor work and the actual cycle coefficient of performance.
Solution:
Table B.4.1: $\quad \mathrm{h}_{1}=271.89 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{s}_{1}=1.0779 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

$$
\begin{aligned}
& \mathrm{P}_{2}=\mathrm{P}_{3}=1400 \mathrm{kPa}, \mathrm{~T}_{3}=18.88^{\circ} \mathrm{C}, \mathrm{~h}_{4}=\mathrm{h}_{3}=\mathrm{h}_{\mathrm{f}}=87.45 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{2 \mathrm{ac}}=330.07 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

C.V. Compressor (actual)

Energy Eq.: $\quad \mathrm{w}_{\mathrm{C} \text { ас }}=\mathrm{h}_{2 \text { ac }}-\mathrm{h}_{1}=330.07-271.89=\mathbf{5 8 . 1 8} \mathbf{~ k J} / \mathbf{k g}$
C.V. Evaporator

Energy Eq.: $\quad \mathrm{q}_{\mathrm{L}}=\mathrm{h}_{1}-\mathrm{h}_{4}=\mathrm{h}_{1}-\mathrm{h}_{3}=271.89-87.45=184.44 \mathrm{~kJ} / \mathrm{kg}$

$$
\beta=\frac{\mathrm{q}_{\mathrm{L}}}{\mathrm{w}_{\mathrm{C} \mathrm{ac}}}=\frac{184.44}{58.18}=3.17
$$

Ideal refrigeration cycle with actual compressor

$$
\begin{aligned}
& \mathrm{T}_{\text {cond }}=18.88^{\circ} \mathrm{C}=\mathrm{T}_{\text {sat }} 1400 \mathrm{kPa} \\
& \mathrm{~T}_{2}=60^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\mathrm{T}_{\text {evap }}=-20^{\circ} \mathrm{C}=\mathrm{T}_{1}
$$

Properties from Table B. 4

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108

13.191

Two pound moles of ammonia are burned in a steady state process with $x \mathrm{lb} \mathrm{mol}$ of oxygen. The products, consisting of $\mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{2}$, and the excess O_{2}, exit at 400 F , $1000 \mathrm{lbf} / \mathrm{in} .^{2}$.
a. Calculate x if half the water in the products is condensed.
b. Calculate the absolute entropy of the products at the exit conditions.

$$
2 \mathrm{NH}_{3}+\mathrm{xO}_{2} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}+(\mathrm{x}-1.5) \mathrm{O}_{2}
$$

Products at $400 \mathrm{~F}, 1000 \mathrm{lbf} / \mathrm{in}^{2}$ with $\mathrm{n}_{\mathrm{H} 2 \mathrm{O} \text { LIQ }}=\mathrm{n}_{\mathrm{H} 2 \mathrm{O} \text { VAP }}=1.5$
a) $\mathrm{y}_{\mathrm{H} 2 \mathrm{O} \text { VAP }}=\frac{\mathrm{P}_{\mathrm{G}}}{\mathrm{P}}=\frac{247.1}{1000}=\frac{1.5}{1.5+1+\mathrm{x}-1.5}$

$$
x=5.070
$$

b) $\mathrm{S}_{\text {PROD }}=\mathrm{S}_{\text {GAS MIX }}+\mathrm{S}_{\text {H2O LIQ }}$

Gas mixture:

	n_{i}	y_{i}	$\overline{\mathrm{s}}_{\mathrm{i}}^{\circ}$	$-\overline{\mathrm{R}} \ln \frac{\mathrm{y}_{\mathrm{i}} \mathrm{P}}{\mathrm{P}_{0}}$	$\overline{\mathrm{~S}}_{\mathrm{i}}$
$\mathrm{H}_{2} \mathrm{O}$	1.5	0.2471	48.939	-5.604	43.335
O_{2}	3.57	0.5881	52.366	-7.326	45.040
$\mathrm{~N}_{2}$	1.0	0.1648	49.049	-4.800	44.249

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{GAS} \text { MIX }}=1.5(43.335)+3.57(45.040)+1.0(44.249)=270.04 \mathrm{Btu} / \mathrm{R} \\
& \mathrm{~S}_{\mathrm{H} 2 \mathrm{O} \text { LIQ }}=1.5[16.707+18.015(0.5647-0.0877)]=37.95 \mathrm{Btu} / \mathrm{R} \\
& \mathrm{~S}_{\mathrm{PROD}}=270.04+37.95=\mathbf{3 0 7 . 9 9} \mathbf{B t u} / \mathbf{R}
\end{aligned}
$$

