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1

The properties of gases

1A The perfect gas

Answers to discussion questions

1A.2

The partial pressure of a gas in a mixture of gases is the pressure the gas would exert if it
occupied alone the same container as the mixture at the same temperature. Dalton’s law is a
limiting law because it holds exactly only under conditions where the gases have no effect
upon each other. This can only be true in the limit of zero pressure where the molecules of
the gas are very far apart. Hence, Dalton’s law holds gxanty for a mixture of perfect

gases; for real gases, the law is only an approximation.

Solutions to exercises

1A.1(b)

1A.2(b)

1A.3(b)

1A.4(b)

1A.5(b)

The perfect gas law [1A.5] BV = nRT,implying that the pressure would be

_ nRT

SV
All quantities on the right are given to us exceptinich can be computed from the given
mass of Ar.

3 25¢g
39.95g mol*

oy 2 3 -1 -1
o p= (0.626 mol)x (8.31x 10 in; db;r K™ mol™)x (30+273) K _ o —

So@, the sample would not exert a pressure of 2.0 bar.

- 0.626mol

Boyle’s law [1A.4a] applies.
pV = constant so piVi = piVi
Solve for the initial pressure:

. PV,  (1.97 bar) (2.14dn?)

[ = = =|1.07 ba
I R Fvvey -y~ (A
(i) Theoriginal pressure in Torr is

(1atm ) (760 Tom)
b =07 ban| o3 bas | T am ) ~[803 Tor

The relation between pressure and temperature at constant volume can be derived from the
perfect gas law, p¥ nRT[1A.5]
S0 pcT and PP
T
Thefinal pressure, then, ought to be

T
0 = bl _ (125 kPaX (11+ 273)K _

T (23+ 273)K

According to the perfect gas law [1.8], one can compute the ambgais from pressure,
temperature, and volume.

pV=nRT
=1 3
o noPV_ (1.00 atm) (1.013x 10°Pa atm') x (4.00x 10°m?) _1.66x 1 mol
RT (8.3145 J K'mol™) x (20+ 273)K

Once this is done, the mass of the gas can be computed from the amount and the molar
mass:

m= (1.66x 10°mol) x (16.04g mol ") = 2.67x 16°g =

The total pressure is the external pressure plus the hydrostatic pressure [1A.1], hmaking t
total pressure
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23 =
kT 1. 381: 102 JK™)(293 Kz _33x10° Jm® =
T oA 0.36x (10° m)*(10x 0.34x10° m)

Comment. This pressure works out to 33 bar (about 33 atm), conditions under which the
assumption of perfect gas behavior and kinetic model applicability at least begins to come
into question.

1B.7(b) The mean free path [1B.13]is

_ kT (1.381x10% J K*)(217 K)

op 0.43x(10° my(12.1x 10’ Pa atm)

Solutions to problems

1B.2  The number of molecules that escape in unit time is the number per unit time that would have
collided with a wall section of area équal to the area of the small hole. This quantity is
readily expressed in terms &f,, the collision flux (collisions per unit time with a unit area),
given in eqn 19A.6. That is,

dN —Ap
= LWAE
dt (27mkT)
wherep is the (constant) vapour pressure of the solid. The change in the number of molecules
inside the cell in an intervaht is thereforeAN =-Z,, AAt, and so the mass loss is

12 12

[ m
Aw=maN==Ap| o 1) A=A GeRT) M

Therefore, the vapour pressure of the substance in the cell is

_( AW) (ZﬂRT]M
P=aat M

For the vapour pressure of germanium

. 43x10°kg ) [ 27(8.3145 JK* mol)(1273K))
L;r(O 50x 10" m)(7200 sj k 72.64x10° kg mol™*

= 7.3x10° Pa=

1B.4  We proceed as in Justification 1BeXcept that, instead of taking a product of three one-
dimensional distributions in order to get the thdémensional distribution, we ake a product
of two onedimensional distributions.

f(v,.v,)dvdv = f(v})f(v))dvdv, = [2 nllTj e’mvz/mdvxdvy
T

wherev? = v¢ +v;. The probability(v)dv that the molecules have a teémensional speed,

in the rangev to v + dv is the sum of the probabilities that it is in any of the area elements
dv,dvy in the circular shell of radius Whe sum of the area elements is the area of the circular
shell of radius \and thicknesslv which is z(v+dv)? — m# = 2mdv . Therefore,

mv2/2KT | _ ( M\ — Mv?/2RT M ~m
V= LkTJ T (RT)Y {F‘d

The mean speed is determined as
Voo = | VE(V)dv = L_ JJ vie ™A dy
Using integral G.3 from the Resource Section yields

(m) () (2|<T\3’2 |(2kTY?| | ZRTY
Vinean LkTJ \ J LZm L2m

1B.6  The distribution [1B.4] is

10
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(130T0rr)x( Latm jx(30.6dn?)

760Torr

n=rY _ — =0.193mol
RT (0.08206dm atmK' mol 3 (330 2K)

This is a substantial fraction of the original amount of water and cannot be ignored. Consequently the

calculation needs to be redone taking into account the fact that only a,pafthe vapr condenses

into a liquid while the remainder (1.00 mohy remains gaseous. The heat flow involving water, then,

becomes

qH,0)=-nA  H+nC  (H,0,)AT(H,0)
+(1.00mol-n)C_ (H,0,9)AT(H,0)
Becausa, depends on the equilibrium temperature through

n= 1.00mo|—lg—\_/|_, wherep is the vapor pressure of water, we will have two unknovpren@T) in

the equatior-q(H,0) = q(Cu). There are two ways out of this dilemma: (1)nay be expressed as a

function of Thy use of the Clapeyron equation, or (2) by use of successive approximations. Redoing
the calculation yields:

. nA,H+nC,  (HO1)x100C+(1.00-n)C  (H,0,9)x100C
mC, + nCp,m(HZO, ) + (1.00- nl)Cp‘m(HZO,g)

With
n, = (1.00 mol)- (0.193mol)= 0.807 mol

(noting that G,(H20,g) = 33.6 J mot K™ [Table 2C.3) 6 = 47.2°C. At this temgrature, the vapor
pressure of water is 80.41 Torr, corresponding to

n, = (1.00mol)- (0.123mol)= 0.877 mol
This leads tof = 50.8°C. The successive approximations eventually converge to yield a value of

|49.9 C= 323 1I* for the final temperature. (At this temperature, the vapor pressure is 0.123 bar.)

Using this value of the final temperature, the heat transferred and the various entropies are calculated as
in part (a).

q(Cu)= (2.00x 10°g) x (0.385J K g*) x (49.9K)= = —q(H,0)

sst,0)= "2 v, i T
b i
AS(Cu)=mC,In I—f -

AS(total) = -1198 J K +1292 JK ™' =

3A.10 AS depends on only the initial and final states, so we cami$se nC, | In-_rl_—f [3A.20]

. q I’Rt )
Since =nC_(T.-T), T.=T + =T + =1tV = | °R{]
q p,m( f |) f i ncp’m i nCp’m [q ]
. [ 1?Rt )
Thatis, AS=nC__In| 1+
p.m nC T
pm i
Snce n= &gl =7.87 mol
63.5 g mol

AS=(7.87 moljx (244 JK* mot 3 |E 1

= (192 JK* X (In127)=|+ 45.4 J R

(1.00 AY x (1000Q X (150 s
(7.87)x (244 JK* X (293K

38

Download full file from buklibry.com



Full file at https://buklibry.com/download/solutions-manual-physical-chemistry-10th-edition-by-paula-atkins/

Figure 5D.4

NH,CI

0 0.2 0.4 0.6 0.8 ;|

Point (a) is in altwo-phaspregion and point (b) in fihreephaskregion. Point (c) is
practically in dsingle-phaseregion; that is, it is on the border between a sipiase and a
two-phase region, so there would be a vanishingly small amount of a second phase present.
Finally, point (d), for which all three components are present in nearly equal amounts, is in
althreephaseregion (although very near the border with a tphase region).

5D.5(b) (i) Note the line in FigureB. 5 that runs from the wateMH,Cl edge near (&WH4CI) = 0.2
(the point that re@sents a saturated aqueous solution of@Ho the (NH),SO, vertex.
Traveling along that line from the edge to the vertex represents adding,$@to a
saturated aqueous solution of j@{l Note that it traverses the singlbase region at first.
Thatis, the added (NE,SO, dissolves and does not cause J8Hto precipitate out. If one
starts with saturated aqueous J@Hwith solid NH,Cl in excess, then the starting point is a
bit further down on the watéMH,Cl edge, for example at(éH,Cl) = 0.3. Adding
(NH,),SO, to such a solution would take one from that point to the jJp8®, vertex.
Initially, the system remains in the typdhase region, but eventually a singlease region is
reached. Note that the line intersects the sipbkese region at a highNH,Cl-water ratio
and even a higher overalNH,CI) than that of saturated aqueous /8H (That is, there is
not only more NHCI relative to water at that intersection point, but /8His a larger
fraction of the saturated threeamponent solution thait was in the saturated two
component system of water and j}) So here too, the effect of adding (N4$0, is to
make additional NECI dissolve, at least at first.

Figure 5D.5

NH,CI £ ; / Ny
0 0.2 0.4 0.6 0.8

"\ 3(NH,),S0,
-

(i) First convert to moles for a convenient sample size, such as &0d ¢ind composition
by mole fraction.

1 mol

NH,CI: 25gx =0.467 mol
9¢g
(NH,),S0;; 75 gx —M _ 6 568 mol
132.15¢
To get mole fractions, divide these amounts by the total amount of 1.03 mol:
0.467 mol
X(NH,Cl)=——=0.45 X((NH4),S0O,) = 0.55
(NH.Ch == ((NH,);SQ)
27
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ﬁxeﬂkx _ 7ddx SHikx — (IE)X( k) +|kx +kh éIkX

f)xe—ikx — Tlddx sikx :(iﬁjx(_ k) |kx — kh elkx

Because these functions are eigenfunctions of the momentum operator and the system wavefunction is a
superposition of them, by the principle of linear superposition of eigenfunttiersobability of measuring a
particular momentum eigenvalue inexigs of observations is proportional to the square modalf$ ¢f the
corresponding coefficient in the superposition expression(eée text Section 7C.2)

(a) The probability of observing the linear momentwkv: is |cl|2 = .

(b) The probability of observing the linear momentuk is |cz|2 = .

(c) |cl|2 =0.90 and, taking ¢ to be positive, ¢= 0.95.

Since the sum of the probabilities must equaty; =1-|g|’ = 0.10 and, thereforg, =+ O..

Hence, the wavefunction ‘13/ =0.95¢&+ 032¢&“|.
(d) w = (cosy )™ + (siny )&% =c, & +c, &

The expectation value for kinetic energy depends upon the curvature of the wavefunction so we begin by finding
the expression for’g/dx’.

/4 H +ikx ikx
—— =ikge™ —ikce
ax G G
d2 Cle+|k>< kzcze—lkx — _kzl//
dx’
Thus,y is an eigenfunction of the®g/dx’ operator and it must also be an eigenfunction of the kinetic energy
operator.
- R (nk)’
Ev= 7C.5]=——
W=z CSl=— v

ik
The kinetic energy of the particle is the eigenvel%,\)— .
m

7C.12The grounestate wavefunction of a hydrogen atom is={1/ma3)!/?e~"/% . Calculate (a) the mean
potential energy and (b) the mean kinetic energy of an electron in the ground state of a hydrogenic atom.

12
The normalized wavefunctide y = (—3] e,
T8,

(@) (V)zjl//*\71//dz' {\A/ }

Ang,r
i (41150 r]

( j ( jx41t— €
4ne, 4ne,a,

2 2
(b) In onedimension: E g : (h 3 j(h :j %md—z [7C.5]. For threedimensional systems
m 2m\ i dx/\ i dx X

such as the hydrogen atom the kinetic energy operator is

a2 2 2 2 2 2
Ek —p_x+ p pz :_h_ a_2+a_2+a_ _h_vz
om 2m ' 2m  2m|ox oy o7 2m

o° ok ok o° 0° ok , 07 62 62
where—=| — | , , — == andV
ox’ [ lez 6y2 [ayzlz o7 [6 22) o " oy EYd 822
The V? operator, called the laplacian operator or thesdgilared operator, is advantageously written in
spherical coordinates because the wavefunction has its simplest form in spherical coordinates. Mathematical

[ —¢ jjg’re'z”ao d x 4t

4ne,
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S0 %ZSiﬂ2§j|Sfdr+co§§J.l pf dT+Sin§C°5§I(S*p+p*s)dr
1

=sii*{+cos¢=1.
In the last step, we used the fact that the s and p orbitals are orthogonal and normalized.
Thus
and [y =(sinYs+(cos Qp
Let s, =Nyhy = Ny{(cos ¢)s—(sin {)p}
Solve for the normalization constant N

1= ij{(eos@s— (sing)p}*{(cos &)s— (sin{)pid ¢

1 in2 2 ; * *
SO N—;=CO§CIISde+Sn ¢j|p| dr—sngcosgj(p S+s*p)dr

=cos {+sin’ ¢ =1
Thus
and [y =(cosQs—(sinYp

In other words, the functions were already normalized.

Sdutions to problem

10A.2 One approach is to construct the explicit forms of the orbitals and find the valyethaif
maximize the squares of their magnitudes. We need the component unhybridized orbitals, put
together from the radial and angular functions liste@iables 9A.1 and 8C.1:

1(2)*" SRR A "
2s= Ry, OOZ@LEJ x(2-p)e XLEJ :LEJ LEJ (2-p)e

Use egns. 9A.22 to write the and g orbitals in terms of the complex hydrogenic orbitals
defined in egn. 9A.21:

1
2px == ﬁ R21(Y1,+1 - Y1,71)

1 1 (2, (3,
Sl a) Mg et e

() () amocos
20, = o1 R+, )

(1) (2)" .

“32) &)

where p= 22—26: = % [9A.114]

singsing

1/2 3/2
In forming each hybrid, we neglect the faCt‘E'é_zﬂ] LEJ e”? common to each

component; an angi@dependent multiplicative term cannot influence the angle at which the
hybrid is maximal.

Next, form the hybrids, using egn. 10A.7:

hy=s+ 2%, = (2 —p) + 2*(psin @sin ¢) = 2 +p(2"*sin sin ¢ 1)
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Figure 14B.2

E14B.5(b) v = g'ﬂ—r’:B" [Solution to exercises 14A.3(a) & {t

vle) _ g3lp)
vitH) - gH)
or v(*P)= 22834 500 MHz=
5.5857
The proton resonance consists of 2 lif@s1+1) and the®P resonance of 5 linef@ x (4x1)+1].
The intensities are in the ratio 1:4:6:4:1 (Pascal’s triangle for four equivalent spirclei, Sectn

48.3). The lines are space‘;él&s?: 2.47 times greater in the phosphorus region than the proton

2634
region. The spectrum is sketched in Fig. 14B.3.

Hence,

Figure 14B.3

Proton
resonance

Phosphorus
resonance

E14B.6(b) See Section 14B.3(a), Example 14Br8 Figs. 1B.12 and 14B.13or the approach to the solution to
this exercise. Also see Example 14D.1 and Figs. 14D.4 and 14D.5. That latter example and those
figures are applied specifically to EPR spectra, but the process of determining the intensity pattern in
the fine structure of an NMR spectrum is the same. See the table below for the version of Pascal's
triangle for up to 3 spi®/2 nuclei. Each number in the table is the sum of thel sib6(2, 21+ 1 = 6)
numbers above it (3 to the right and 3 to the left).
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conclude that thigargeststableclump of this two-dimensionalattice of ions consistf 7 ringsaroundthe

centralcatioj.

18C Mechanical, electrical, and magnetic properties of solids

Answers to dscussion questions

18C.2 The most obvious difference is that there is no magnetic analog of electric charge; hence, there are no
magnetic ‘ions.” Both electric and magnetic moments exist and tlagske either permanent or induced.

Induced magnetic moments in the entire sample can be either parallel or antiparallel to the applied field
producing them (paramagnetic or diamagnetic moments), whereas in the electric case they are always parallel.
Magretization, %, is the analog of polarization, &lthough both magnetization and induced dipole moment are
proportional to the fields producing them, they are not analogous quantities, neither are volume magnetic
susceptibility,y, and electric polarizabilityy. The magnetic quantities refer to the sample as a whole, the

electric quantities to the molecules. Molar magnetic susceptibility is analogous to molar polarization as can be
seen by comparing equations 18C.7 and 16Afshmagnetizabilitys analogous to electric polarizability.

Solutions to &ercises

transverse strairilsc 2]_ Q41

normal strain
We note that the transverse strain is usually a contraction and that it is usually evenly distributed in both
transverse directions hat is, if (AL/L), is the normal strain, then the transverse strgiis}), and (AL/L), ,

are equal. In this case of a 2.0% uniaxial stress:

(A—LLJ =+0.02Q (A—Ll'j = (A—LLJ =-0.020x 0.4 - 00082 [a contraction of widt
z X y

Application of the stress to 1 drrube of lead results in a volume equal to
(1-0.0082f x (& 0020y 1dim= .10033d

The change in volume i8.3x 10° dni|.

18C.2(b) Is galliumdoped germanium atype or ntype semiconductors?
p-type; the dopant, gallium, belongs to Group 13 whegeasianium belongs to Group 14.

18C.1(b) Poisson’s ratiov, =

18C3(b)m=g{] St1)}"*u, [18C.9,with Sin place ofs’
Therefore, sincen=5.3 y, andge~ 2,

S(S+1)=(4)x(5.3f = 7.0 implyingthat S= 2.
BecauseS ~ %, the Mrf* ions typically have-5 unpairedsping
In actuality most MA compounds have 5 unpaired spins.

18CA(b) 7,, = 2V,[18C.8]= M /p= (-7.9< 10° X (84 15¢na ™" )/ (0 81gn
=|-8.2« 10° cm® molY| = |-8.2x 10" ni_mo’|

18C.5(b) The molar susceptibility is given by

_ Na G S(SHY
m 3KT

KTy,
N, 02 1ot

[18C.10a] so S &+ 1

18:14
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Atkins & de Paula: Atkins’ Physical Chemistry 10e

EA.17(a) 01°C=%x(6:1°F-3) or 6, 1 E¥x0 1G 3, 06,=173°F

EA.18(a) 105 kPe
EA.19(a) Ss

EA.20(a) 1.8 MPa

EA.21(a) 4.6x 10 P¢ 6.9x10 Pe

Topic B

EB.1(a) 0 9.81ms', 48mJ (i) 29.4ms', 0.43J
EB.2(a) S = ;n—f;

EB.4(a) () 2.25<10%° ¢ (i) 9.00x 10*° .
EB.5(a) () 1.88x 16 ms', 100 keV

EB.6(a) 1.15¢ 10% ., 1.48x 107 .

EB.7(a) ~2.40 V

EB.8(a) 24.1kJ, 28.8°C

EB.9(a) 27.2Kor27.2 (

EB.10(a) 128 J

EB.11(a) 2.4194 JK* @

EB.12(a) 75.3 J K" mol*

EB.13(a) 8.3145 kJ mot

EB.14(a) Sh,00 > Sho0

EB.15(a) Sreonot)> Sregook

EB.17(a) 0 1.6x 10" (i) 0.021
EB.19(a) 4.631x 10°

EB.21(a) 1.07

EB.22(a) 1.25
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