
1 The properties of gases 

1A The perfect gas 

Answers to discussion questions 

1A.2 The partial pressure of a gas in a mixture of gases is the pressure the gas would exert if it 
occupied alone the same container as the mixture at the same temperature. Dalton’s law is a 
limiting law because it holds exactly only under conditions where the gases have no effect 
upon each other. This can only be true in the limit of zero pressure where the molecules of 
the gas are very far apart. Hence, Dalton’s law holds exactly only for a mixture of perfect 
gases; for real gases, the law is only an approximation. 

Solutions to exercises 

1A.1(b) The perfect gas law [1A.5] is pV = nRT, implying that the pressure would be 

p =
nRT

V
All  quantities on the right are given to us except n, which can be computed from the given 
mass of Ar. 

n =
25 g

39.95 
−1

g mol
= 0.626 mol

so  p =
(0.626 mol)× (8.31× 10−2dm3  bar K−1 mol−1) × (30+ 273) K

1.5 dm3
= 10.5bar

So no, the sample would not exert a pressure of 2.0 bar. 

1A.2(b) Boyle’s law [1A.4a] applies. 
pV = constant so pfVf = piVi 

Solve for the initial pressure: 

(i) p
i

=
p

f
V

f

V
i

=
(1.97 bar)× (2.14dm3)

(2.14+ 1.80)dm3
= 1.07 bar

(ii) The original pressure in Torr is

p
i

= (1.07 bar)×
1 atm

1.013 bar







×
760 Torr

1 atm







= 803 Torr

1A.3(b) The relation between pressure and temperature at constant volume can be derived from the 
perfect gas law, pV = nRT [1A.5] 

so p ∝ T and
p

i

T
i

=
p

f

T
f

The final pressure, then, ought to be 

p
f

=
p

i
T

f

T
i

=
(125 kPa)× (11+ 273)K

(23+ 273)K
= 120 kPa

1A.4(b) According to the perfect gas law [1.8], one can compute the amount of gas from pressure, 
temperature, and volume. 

pV = nRT 

so n =
pV

RT
=

(1.00 atm)× (1.013× 105Pa atm−1) × (4.00× 103m3)

(8.3145 J K−1mol−1) × (20+ 273)K
= 1.66× 105mol

Once this is done, the mass of the gas can be computed from the amount and the molar 
mass: 

m= (1.66× 105mol) × (16.04 
−1

g mol ) = 2.67× 106g = 2.67× 103  kg

1A.5(b) The total pressure is the external pressure plus the hydrostatic pressure [1A.1], making the 
total pressure 
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p =

kT

σλ
=

(1.381× 10−23  J K−1)(293 K)

0.36× (10−9  m)2(10× 0.34× 10−9  m)
= 3.3× 106  J m−3 = 3.3 MPa  

Comment. This pressure works out to 33 bar (about 33 atm), conditions under which the 
assumption of perfect gas behavior and kinetic model applicability at least begins to come 
into question. 

1B.7(b) The mean free path [1B.13] is 

 
  
λ =

kT

σ p
=

(1.381× 10−23  J K−1)(217 K)

0.43× (10−9  m)2(12.1× 103  Pa atm−1)
= 5.8× 10−7  m  

Solutions to problems 

1B.2 The number of molecules that escape in unit time is the number per unit time that would have 
collided with a wall section of area A equal to the area of the small hole. This quantity is 
readily expressed in terms of ZW, the collision flux (collisions per unit time with a unit area), 
given in eqn 19A.6. That is, 

 
  

dN

dt
= −Z

W
A =

− Ap

(2πmkT)1/2
 

where p is the (constant) vapour pressure of the solid. The change in the number of molecules 
inside the cell in an interval t∆  is therefore WN Z A t∆ = − ∆ , and so the mass loss is 

 
  
∆w = m∆N = − Ap

m

2πkT







1/2

∆t = − Ap
M

2π RT







1/2

∆t  

Therefore, the vapour pressure of the substance in the cell is 

 
1/ 2

2 RTw
p

A t M

π−∆   = ×      ∆
 

For the vapour pressure of germanium 

 

  

p =
43× 10−9 kg

π (0.50× 10−3 m)(7200 s)







×

2π (8.3145 J K−1 mol−1)(1273 K)

72.64× 10−3  kg mol−1








1/2

= 7.3× 10−3  Pa= 7.3 mPa

 

1B.4 We proceed as in Justification 1B.2 except that, instead of taking a product of three one-
dimensional distributions in order to get the three-dimensional distribution, we make a product 
of two one-dimensional distributions. 

 
  
f (v

x
,v

y
)dv

x
dv

y
= f (v

x
2 ) f (v

y
2 )dv

x
dv

y
=

m

2πkT







e−mv2 /2kTdv
x
dv

y
 

where
  
v2 = v

x
2 + v

y
2 . The probability f(v)dv that the molecules have a two-dimensional speed, v, 

in the range v to v + dv is the sum of the probabilities that it is in any of the area elements 
dvxdvy in the circular shell of radius v. The sum of the area elements is the area of the circular 
shell of radius v and thickness dv which is π(ν+dν)2 – πν2 = 2πνdν . Therefore, 

 

  

f (v) =
m

kT







ve−mv2 /2kT =
M

RT







ve− Mv2 /2RT
  

M

R
=

m

k









  

The mean speed is determined as 

  
  
v

mean
= vf (v)dv

0

∞

∫ =
m

kT







v2e−mv2 /2kT dv
0

∞

∫  

Using integral G.3 from the Resource Section yields 

 

  

v
mean

=
m

kT







×
π1/2

4







×

2kT

m







3/2

=
πkT

2m







1/2

=
π RT

2M







1/2

 

1B.6 The distribution [1B.4] is 
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3

3 1 1

1atm
(130Torr) (30 6dm )

760Torr
0 193mol

(0 08206dm atm K mol ) (330 2K)

pV
n

RT − −

 × × . 
 = = = .

. × .
 

This is a substantial fraction of the original amount of water and cannot be ignored.  Consequently the 
calculation needs to be redone taking into account the fact that only a part, nl, of the vapor condenses 
into a liquid while the remainder (1.00 mol – nl) remains gaseous. The heat flow involving water, then, 
becomes 

  

  

q(H
2
O) = −n

1
∆

vap
H + n

1
C

p,m (H
2
O, l)∆T(H

2
O)

+(1.00mol− n
1
)C

p,m(H
2
O,g)∆T(H

2
O)

 

Because nl depends on the equilibrium temperature through  

  
n

1
= 1.00mol− pV

RT
, where p is the vapor pressure of water, we will have two unknowns (p and T) in 

the equation
  
−q(H

2
O) = q(Cu) . There are two ways out of this dilemma: (1) p may be expressed as a 

function of T by use of the Clapeyron equation, or (2) by use of successive approximations. Redoing 
the calculation yields: 
 

 

  

θ =
n

l
∆

vap
H + n

l
C

p,m (H
2
O, l) × 100°C + (1.00− n

l
)C

p,m (H
2
O,g) × 100°C

mC
s

+ nC
p,m (H

2
O, l) + (1.00− n

l
)C

p,m (H
2
O,g)

 

With 
  

  
n

1
= (1.00mol)− (0.193mol)= 0.807 mol 

(noting that Cp,m(H2O,g) = 33.6 J mol–1 K–1 [Table 2C.2]) θ = 47.2°C. At this temperature, the vapor 
pressure of water is 80.41 Torr, corresponding to 
  

  
n

1
= (1.00mol)− (0.123mol)= 0.877 mol 

This leads to θ = 50.8°C. The successive approximations eventually converge to yield a value of θ =

49.9 C 323 1K= .  for the final temperature.  (At this temperature, the vapor pressure is 0.123 bar.) 

Using this value of the final temperature, the heat transferred and the various entropies are calculated as 
in part (a). 

 
  
q(Cu)= (2.00× 103 g) × (0.385J K−1 g−1) × (49.9 K)= 38.4 kJ = −q(H

2
O)  

 

  

∆S(H
2
O) =

−n∆
vap

H

T
b

+ nC
p,m ln

T
f

T
i







= −119.8J K−1  

 
  
∆S(Cu)= mC

s
ln

T
f

T
i

= 129.2J K−1  

 
  
∆S(total)= −119.8 J K−1 + 129.2 J K−1 = 9 JK −1  

 

3A.10  ∆S  depends on only the initial and final states, so we can use f
m

i

ln  [3A.20]p

T
S nC

T,∆ =   

Since 

  

q = nC
p,m(T

f
− T

i
), T

f
= T

i
+

q

nC
p,m

= T
i
+

I 2Rt

nC
p,m

[q = ItV = I 2Rt]  

That is, 

  

∆S = nC
p,m ln 1+

I 2Rt

nC
p,mT

i









   

Since 
  
n =

500 g

63.5 g mol−1
= 7.87 mol 

 

2
1 1

1

1 1

(1 00 A) (1000 ) (15 0 s)
(7 87 mol) (24 4 J K  mol ) ln 1

(7 87) (24 4 J K ) (293 K)

(192 J K ) (ln1 27) 45.4 J K

S − −
−

− −

 . × Ω × .
∆ = . × . × + . × . × 

= × . = +
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Figure 5D.4 

 
 
Point (a) is in a two-phase region and point (b) in a three-phase region. Point (c) is 
practically in a single-phase region; that is, it is on the border between a single-phase and a 
two-phase region, so there would be a vanishingly small amount of a second phase present. 
Finally, point (d), for which all three components are present in nearly equal amounts, is in 
a three-phase region (although very near the border with a two-phase region). 

5D.5(b) (i) Note the line in Figure 5D. 5 that runs from the water-NH4Cl edge near x(NH4Cl) = 0.2 
(the point that represents a saturated aqueous solution of NH4Cl) to the (NH4)2SO4 vertex. 
Traveling along that line from the edge to the vertex represents adding (NH4)2SO4 to a 
saturated aqueous solution of NH4Cl. Note that it traverses the single-phase region at first. 
That is, the added (NH4)2SO4 dissolves and does not cause NH4Cl to precipitate out. If one 
starts with saturated aqueous NH4Cl with solid NH4Cl in excess, then the starting point is a 
bit further down on the water-NH4Cl edge, for example at x(NH4Cl) = 0.3. Adding 
(NH4)2SO4 to such a solution would take one from that point to the (NH4)2SO4 vertex. 
Initially, the system remains in the two-phase region, but eventually a single-phase region is 
reached. Note that the line intersects the single-phase region at a higher NH4Cl-water ratio 
and even a higher overall x(NH4Cl) than that of saturated aqueous NH4Cl. (That is, there is 
not only more NH4Cl relative to water at that intersection point, but NH4Cl is a larger 
fraction of the saturated three-component solution than it was in the saturated two-
component system of water and NH4Cl.) So here too, the effect of adding (NH4)2SO4 is to 
make additional NH4Cl dissolve, at least at first. 
Figure 5D.5 
 

 
 
(ii)  First convert to moles for a convenient sample size, such as 100 g, and find composition 
by mole fraction. 

NH4Cl:  
 
25 g×

1 mol

53.49 g
= 0.467 mol  

(NH4)2SO4:  
 
75 g×

1 mol

132.15 g
= 0.568 mol  

To get mole fractions, divide these amounts by the total amount of 1.03 mol: 

 
  
x(NH4Cl) =

0.467 mol

1.03 mol
= 0.45 x((NH4)2SO4) = 0.55 
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( )

( )

+i +i +i +i

i i i i

d
ˆ e e i e e

i d i

d
ˆ e e i e e

i d i

kx kx kx kx
x

kx kx kx kx
x

p k k
x

p k k
x

− − − −

 = = × = + 
 
 = = × − = − 
 

  

  
 

Because these functions are eigenfunctions of the momentum operator and the system wavefunction is a 
superposition of them, by the principle of linear superposition of eigenfunctions the probability of measuring a 
particular momentum eigenvalue in a series of observations is proportional to the square modulus (|ck|

2) of the 
corresponding coefficient in the superposition expression of ψ (see text Section 7C.2). 

(a) The probability of observing the linear momentum k+   is 22

1 cosc χ= . 

(b) The probability of observing the linear momentum k−   is 22

2 sinc χ= . 

(c) 
2

1 0.90c =  and, taking c1 to be positive, c1 = 0.95. 

Since the sum of the probabilities must equal 1, 
2 2

2 1 21 0.10 and, therefore, 0.32c c c= − = = ± . 

Hence, the wavefunction is i i0 95 e 0 32 ekx kxψ −= . ± . . 

(d) 1 2
+i i +i i(cos )e (sin )e e ekx kx kx kxc cψ χ χ − −= + = +  

The expectation value for kinetic energy depends upon the curvature of the wavefunction so we begin by finding 
the expression for d2ψ/dx2. 

 

+i i
1 2

2
2 +i 2 i 2

1 22

d
i e i e

d

d
e e

d

kx kx

kx kx

kc kc
x

k c k c k
x

ψ

ψ ψ

−

−

= −

= − − = −
 

Thus, ψ is an eigenfunction of the d2ψ/dx2 operator and it must also be an eigenfunction of the kinetic energy 
operator. 

 
( )22 2

k 2

dˆ  [7C.5]
2 2d

k
E

m mx
ψ ψ ψ= − =


 

The kinetic energy of the particle is the eigenvalue 
( )2

2

k

m


. 

 
7C.12 The ground-state wavefunction of a hydrogen atom is 𝜓= (1 π𝑎03⁄ )1/2e−𝑟/𝑎0. Calculate (a) the mean 
potential energy and (b) the mean kinetic energy of an electron in the ground state of a hydrogenic atom. 

The normalized wavefunction is 
1 2

0
3

0

1
e

π
r a

a
ψ

/
− / 

=  
 

. 

(a) 
2

0

2 2
2 / 0

03
0 00

22 2
0

3
0 0 00

ˆ ˆd
4π

1 1
d e d 4π

4π 4ππ

1
4π

4π 2 4ππ

r a

e
V V V

r

e e
r r

r a

ae e

aa

ψ ψ τ
ε

ψ ψ τ
ε ε

ε ε

−∞

 ∗= = −∫  
 

   − −∗= ⋅ = ×∫ ∫   
   

 − − = × × =   
  

 

(b) In one-dimension: 
2 2 2

k 2

ˆ 1 d d dˆ      [7C.5]
2 2 i d i d 2 d

xp
E

m m x x m x
  = = = −  
  

  
. For three-dimensional systems 

such as the hydrogen atom the kinetic energy operator is 

 

22 2 2 2 2 2 2
2

k 2 2 2

2 2 2 2 2 2 2 2 2
2

2 2 2 2 2 2 2 2 2

, , ,

ˆˆ ˆˆ
2 2 2 2 2

where ,  ,  ,  and 

yx z

y z x z x y

pp p
E

m m m m mx y z

x x y y z z x y z

 ∂ ∂ ∂
= + + = − + + = − ∇ 

∂ ∂ ∂ 
     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= = = ∇ = + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

 

The 2∇  operator, called the laplacian operator or the del-squared operator, is advantageously written in 
spherical coordinates because the wavefunction has its simplest form in spherical coordinates. Mathematical 
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so 

  

1

N
1
2

= sin2 ζ | s |2 dτ∫ + cos2 ζ | p |2 dτ∫ + sinζ cosζ (s * p+ p *s)dτ∫
= sin2 ζ + cos2 ζ = 1.

 

In the last step, we used the fact that the s and p orbitals are orthogonal and normalized. 
Thus 
 N1 = 1 and ψ = (sin ζ)s + (cos ζ)p  
Let ψ2 = N2h2 = N2{(cos ζ)s – (sin ζ)p}  
Solve for the normalization constant N2: 

 
  
1= N

2
2 {(cosζ )s− (sinζ )p}*{(cos ζ )s− (sinζ )p}dτ∫  

so 

  

1

N
2

2
= cos2 ζ | s |2 dτ∫ + sin2 ζ | p |2 dτ∫ − sinζ cosζ (p *s + s * p)dτ∫
= cos2 ζ + sin2 ζ = 1

 

Thus 
 N2 = 1 and ψ = (cos ζ)s – (sin ζ)p  
In other words, the functions were already normalized. 

Solutions to problem 

10A.2 One approach is to construct the explicit forms of the orbitals and find the values of φ that 
maximize the squares of their magnitudes. We need the component unhybridized orbitals, put 
together from the radial and angular functions listed in Tables 9A.1 and 8C.1: 

 
  
2s= R

20
Y

00
=

1

81/2

3/2
Z

a







× (2− ρ)e− ρ/2 ×
1/2

1

4π






=
1/2

1

32π






3/2
Z

a







(2− ρ)e− ρ/2  

Use eqns. 9A.22 to write the px and py orbitals in terms of the complex hydrogenic orbitals 
defined in eqn. 9A.21: 

 

  

2p
x

= −
1

21/2
R21(Y1,+1 − Y1,−1)

= −
1

21/2
×

1

241/2

Z

a







3 2

ρe− ρ /2 ×
3

8π






1/2

sinθ(−e+ iφ − e− iφ )

=
1

32π






1/2
Z

a







3 2

ρe− ρ /2 sinθ cosφ

 

 

  

2p
y

=
i

21/2
R21(Y1,+1 + Y1,−1)

=
i

21/2
×

1

241/2

Z

a







3 2

ρe− ρ /2 ×
3

8π






1/2

sinθ(−e+ iφ + e− iφ )

=
1

32π






1/2
Z

a







3 2

ρe− ρ /2 sinθ sinφ

 

where 
  
ρ =

2Zr

2a
=

Zr

a
 [9A.11a] 

In forming each hybrid, we neglect the factor 
  

1/2
1

32π






3/2
Z

a







e− ρ/2  common to each 

component; an angle-independent multiplicative term cannot influence the angle at which the 
hybrid is maximal. 
 Next, form the hybrids, using eqn. 10A.7: 
 h1 = s + 21/2py = (2 – ρ) + 21/2(ρ sin θ sin φ) = 2 + ρ(21/2 sin θ sin φ –1) 
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 Figure 14B.2 
 

 

   
 
       

E14B.5(b)  [ ]N 0  Solution to exercises 14A.3(a) & (b)Ig

h

µ
ν =


 

Hence, 
31 31( ) ( )
1 1( ) ( )

v g

v g
=

P P

H H
 

or 31 2 2634
( P) 500MHz 203MHz

5 5857
ν .

= × =
.

 

The proton resonance consists of 2 lines 1
2(2 1)× +  and the 31P resonance of 5 lines 1

2[2 (4 ) 1]× × + . 

The intensities are in the ratio 1:4:6:4:1 (Pascal’s triangle for four equivalent spin 1
2  nuclei, Section 

48.3). The lines are spaced 
5 5857

2 47
2 2634

.
= .

.
 times greater in the phosphorus region than the proton 

region. The spectrum is sketched in Fig. 14B.3. 

 

Figure 14B.3 

 
  
E14B.6(b) See Section 14B.3(a), Example 14B.3 and Figs. 14B.12 and 14B.13 for the approach to the solution to 

this exercise. Also see Example 14D.1 and Figs. 14D.4 and 14D.5. That latter example and those 
figures are applied specifically to EPR spectra, but the process of determining the intensity pattern in 
the fine structure of an NMR spectrum is the same. See the table below for the version of Pascal’s 
triangle for up to 3 spin-5/2 nuclei. Each number in the table is the sum of the six (I = 5/2, 2I + 1 = 6) 
numbers above it (3 to the right and 3 to the left).  

δΑ
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conclude that the largest stable clump of this two-dimensional lattice of ions consists of 7 rings around the 
central cation. 
 
 
 
 

18C Mechanical, electrical, and magnetic properties of solids 
 

Answers to discussion questions 
 
18C.2 The most obvious difference is that there is no magnetic analog of electric charge; hence, there are no 
magnetic ‘ions.’ Both electric and magnetic moments exist and these can be either permanent or induced. 
Induced magnetic moments in the entire sample can be either parallel or antiparallel to the applied field 
producing them (paramagnetic or diamagnetic moments), whereas in the electric case they are always parallel. 
Magnetization, M, is the analog of polarization, P. Although both magnetization and induced dipole moment are 
proportional to the fields producing them, they are not analogous quantities, neither are volume magnetic 
susceptibility, χ, and electric polarizability, α. The magnetic quantities refer to the sample as a whole, the 
electric quantities to the molecules. Molar magnetic susceptibility is analogous to molar polarization as can be 
seen by comparing equations 18C.7 and 16A.5a and magnetizability is analogous to electric polarizability. 
 
 
 

Solutions to exercises 
 

18C.1(b) Poisson’s ratio: p

transverse strain
 [18C.2] 0 41

normal strain
ν = = .  

We note that the transverse strain is usually a contraction and that it is usually evenly distributed in both 
transverse directions. That is, if ( )zL L∆ /  is the normal strain, then the transverse strains, ( )xL L∆ /  and ( ) yL L∆ / , 

are equal. In this case of a 2.0% uniaxial stress: 

 0 020 0.020 0.41 0 0082  [a contraction of widths]
z x y

L L L

L L L

∆ ∆ ∆     = + . , = = − × = − .     
     

 

Application of the stress to 1 dm3 cube of lead results in a volume equal to 
 2 3 3(1 0 0082) (1 0 020) 1 dm 1 0033dm− . × + . × = .  

The change in volume is 3 33.3 10  dm−× . 

 
18C.2(b) Is gallium-doped germanium a p-type or n-type semiconductors? 
p-type; the dopant, gallium, belongs to Group 13 whereas germanium belongs to Group 14. 
 
18C.3(b) 1 2

e B{ ( 1)} [18C.9 with  in place of ]m g S S S sµ/= + ,  

Therefore, since B5.3 m µ=  and ge ≈ 2, 
 ( ) 21

4( 1) (5.3) 7.0 implying that 2.2S S S+ = × = , =  

Because 4.4
2S ≈ , the Mn2+ ions typically have 4-5 unpaired spins. 

In actuality most Mn2+ compounds have 5 unpaired spins. 
 
18C.4(b) 6 1 3

m m[18C.8] / ( 7 9 10 ) (84 15g ) / (0 811g )mol cmV Mχ χ χ ρ − − −= = = − . × × . .  

 4 10 3 13 1     8.2 10 8.2 10  m  molcm mol
− − −−= − × = − ×  

 
18C.5(b) The molar susceptibility is given by 

 
2 2

A e 0 B m
m 2 2

e 0 B

( 1) 3
 [18C.10a] so ( 1)

3
A

N g S S kT
S S

kT N g

µ µ χ
χ

µ µ
+

= + =  
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EA.17(a) ( )F F
5 9/ C / F 32      or     / F / C 329 5θ θ θ θ° = × ° − ° = × ° + , F 173 Fθ = °  

EA.18(a) 105 kPa 

EA.19(a) S8 

EA.20(a) 1.8 MPa 

EA.21(a) 54.6 10  Pa× , 56.9 10  Pa×  

 

Topic B 

EB.1(a)  (i) 19.81 m s− , 48 mJ (ii ) 129.4 m s− , 0.43 J 

EB.2(a)  terminal 6π
ze

s
Rη

=
E

 

EB.4(a)  (i) 202.25 10  J−×   (ii ) 209.00 10  J−×  

EB.5(a)  (i) 8 11.88 10  m s−× , 100 keV 

EB.6(a)  181.15 10  J−× , 201.48 10  J−×  

EB.7(a)  2.40 V−  

EB.8(a)  24.1 kJ, 28.8 C°  

EB.9(a)  27.2 K or 27.2 C°  

EB.10(a) 128 J 

EB.11(a) 1 12.4194 J K  g− −  

EB.12(a) 1 175.3 J K  mol− −  

EB.13(a) 18.3145 kJ mol−  

EB.14(a) 
2 2H O(g) H O(l)S S>  

EB.15(a) Fe(3000 K) Fe(300 K)S S>  

EB.17(a) (i) 171.6 10−×   (ii ) 0.021 

EB.19(a) 64.631 10−×  

EB.21(a) 1.07 

EB.22(a) 1.25 
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