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Dimension

Because F? has dimension 2, the last proposition implies that this lin-
early independent list of length 2 is a basis of F2 (we do not need to
bother checking that it spans F?).

The next theorem gives a formula for the dimension of the sum of
two subspaces of a finite-dimensional vector space.

2.18 Theorem: If U; and U, are subspaces of a finite-dimensional
vector space, then

dim(U; + Uy) = dimU; + dim U, — dim(U; N Uy).

PROOEF: Let (u1,...,U;m) be abasis of U; N Uy; thus dim(U; N Uy) =
m. Because (u1,..., Uy ) is abasis of U N Uy, itis linearly independent
in U; and hence can be extended to abasis (u1,..., Um,vi,...,v;) of Uy
(by 2.12). Thus dimU; = m + j. Also extend (ui,...,u,) to a basis
(U1yee oy Uy, W1, ..., Wi) Of Up; thus dimU, = m + k.

We will show that (u1,..., um,v1,...,Vj, wi,..., W) is a basis of
U, + Us. This will complete the proof because then we will have

dim(U; +Ux) =m+j+k

m+j)+(m+k)—-m
= dimU1 + ding - dil’l’l(Ul N Uz).
Clearly span(uz,..., Um,Vi,...,Vj, Wi,..., Wi) contains Uy and U,
and hence contains U; + U,. So to show that this list is a basis of

U, + U we need only show that it is linearly independent. To prove
this, suppose

aiur + .-+ amum +bivi+---+bjvi+cwr + - - -+ cawr =0,

where all the a’s, b’s, and ¢’s are scalars. We need to prove that all the
a’s, b’s, and c’s equal 0. The equation above can be rewritten as

CIW1 + -+ Wi = —a1U] — -+ - — AmUm — D1V — - -+ = bV,

which shows that c;wq + - - - + ck Wi € U;. All the w’s are in Uy, so this
implies that cyw; + - - - + cxwg € Uy N Us. Because (uy,...,Uy) is a
basis of U; n U, we can write

Wi+ -+ cawk=diur + -+ - +dmum
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This formula for the
dimension of the sum
of two subspaces is
analogous to a familiar
counting formula: the
number of elements in
the union of two finite
sets equals the number
of elements in the first
set, plus the number of
elements in the second
set, minus the number
of elements in the
intersection of the two
sets.
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58 CHAPTER 3. Linear Maps

Now suppose (c) holds, so that T is surjective. Thus rangeT = V.
From 3.4 we have

dimnull T = dimV — dimrange T
=0,

which implies that null T equals {0}. Thus T is injective (by 3.2), and
so T is invertible (we already knew that T was surjective). Hence (c)
implies (a), completing the proof. [
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Upper-Triangular Matrices

and let v be a corresponding nonzero eigenvector. Extend (v) to a
basis of V. Then the matrix of T with respect to this basis has the form
above. Soon we will see that we can choose a basis of V with respect to
which the matrix of T has even more 0’s.

The diagonal of a square matrix consists of the entries along the
straight line from the upper left corner to the bottom right corner.
For example, the diagonal of the matrix 5.11 consists of the entries
ain,a22,-..,dnmn-

A matrix is called upper triangular if all the entries below the di-
agonal equal 0. For example, the 4-by-4 matrix

6 2 7 5

0 6 1 3

00 7 9

0 0 0 8
is upper triangular. Typically we represent an upper-triangular matrix
in the form

Al *

0 An

the 0 in the matrix above indicates that all entries below the diagonal
in this n-by-n matrix equal 0. Upper-triangular matrices can be consid-
ered reasonably simple—for n large, an n-by-n upper-triangular matrix
has almost half its entries equal to O.

The following proposition demonstrates a useful connection be-
tween upper-triangular matrices and invariant subspaces.

5.12 Proposition: Suppose T € L(V) and (vi,...,Vy) is a basis
of V. Then the following are equivalent:

(a) the matrix of T with respect to (v1,...,Vvy) is upper triangular;
(b) Tvy € span(vy,..., V) foreachk =1,...,n;
(0) span(vy,...,Vk) is invariant under T for each k = 1,...,n.

PROOF: The equivalence of (a) and (b) follows easily from the def-
initions and a moment’s thought. Obviously (c) implies (b). Thus to
complete the proof, we need only prove that (b) implies (c). So suppose
that (b) holds. Fix k € {1,...,n}. From (b), we know that
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Jordan Form

Jordan Form

We know thatif V is a complex vector space, then forevery T € L(V)
there is a basis of V with respect to which T has a nice upper-triangular
matrix (see 8.28). In this section we will see that we can do even better—
there is a basis of V with respect to which the matrix of T contains zeros
everywhere except possibly on the diagonal and the line directly above
the diagonal.

We begin by describing the nilpotent operators. Consider, for ex-
ample, the nilpotent operator N € L(F") defined by

N(zl,---,zn) = (O,Zl,---,znfl)-

If v =(1,0,...,0), then clearly (v,Nv,...,N*v) is a basis of F* and
(N"1v) is a basis of null N, which has dimension 1.

As another example, consider the nilpotent operator N € £L(F°) de-
fined by

8.39 N(z1,22,23,24,25) = (0,21,22,0, 24).

Unlike the nilpotent operator discussed in the previous paragraph, for
this nilpotent operator there does not exist a vector v € F> such that
(v,Nv,N2v,N3v, N*v) is a basis of F>. However, if v; = (1,0, 0, 0,0)
and v» = (0,0,0,1,0), then (vi,Nvi,N2vi,vo,Nv,) is a basis of F°
and (N2vy, NVv») is a basis of null N, which has dimension 2.
Suppose N € L£(V) is nilpotent. For each nonzero vector v € V, let
m(v) denote the largest nonnegative integer such that N™)y # 0. For  Obviously m(v)
example, if N € £(F°) is defined by 8.39, then m(1,0,0,0,0) = 2. depends on N as well
The lemma below shows that every nilpotent operator N € £(V)  ason v, but the choice
behaves similarly to the example defined by 8.39, in the sense that there  of N will be clear from
is a finite collection of vectors v1,...,vk € V such that the nonzero the context.
vectors of the form N7/v, form a basis of V; here v varies from 1 to k
and j varies from 0 to m(v;).

840 Lemma: If N € L(V) is nilpotent, then there exist vectors
vi,...,Vk € V such that

(@  (vi,Nvy,...,NmODy v Ny, ..., Ny js abasis of V;
b)  (NMmODy o N s a basis of null N.
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