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6 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

so the eigenvalues are λ1 = 3, λ2 = 2, λ3 = 1.

Eigenvectors are the corresponding solutions of (A− λiI)ei = 0

When λ = λ1 = 3 we have

⎡
⎣−2 1 2

0 −1 2
−1 1 0

⎤
⎦

⎡
⎣ e11

e12

e13

⎤
⎦ = 0

leading to the solution
e11

−2
= −e12

2
=

e13

−1
= β1

so the eigenvector corresponding to λ2 = 3 is e1 = β1[2 2 1]T , β1 constant.

When λ = λ2 = 2 we have

⎡
⎣−1 1 2

0 0 2
−1 1 1

⎤
⎦

⎡
⎣ e21

e22

e23

⎤
⎦ = 0

leading to the solution
e21

−2
= −e22

2
=

e23

0
= β3

so the eigenvector corresponding to λ2 = 2 is e2 = β2[1 1 0]T , β2 constant.

When λ = λ3 = 1 we have

⎡
⎣ 0 1 2

0 1 2
−1 1 2

⎤
⎦

⎡
⎣ e31

e32

e33

⎤
⎦ = 0

leading to the solution
e31

0
= −e32

2
=

e33

1
= β1

so the eigenvector corresponding to λ3 = 1 is e3 = β3[0 − 2 1]T , β3 constant.

6(e) Eigenvalues given by

∣∣∣∣∣∣
5 − λ 0 6

0 11 − λ 6
6 6 −2 − λ

∣∣∣∣∣∣ = λ3 − 14λ2 − 23λ − 686 = (λ − 14)(λ − 7)(λ + 7) = 0

so eigenvalues are λ1 = 14, λ2 = 7, λ3 = −7
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96 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

n tn Xn f(tn,Xn) X̂n+1 f(tn+1, X̂n+1) Xn+1

0 0.0 −2.0000 −1.3072 −1.8812 0.9887 −1.8911
1 0.1 −1.8911 −1.2343 −1.7912 0.8488 −1.7987
2 0.2 −1.7987 −1.1802 −1.7130 0.7400 −1.7189
3 0.3 −1.7189 −1.1416 −1.6443 0.6538 −1.6489
4 0.4 −1.6489 −1.1162 −1.5830 0.5845 −1.5867
5 0.5 −1.5867 −1.1028 −1.5279 0.5281 −1.5309
6 0.6 −1.5309 −1.1005 −1.4778 0.4818 −1.4803
7 0.7 −1.4803 −1.1092 −1.4318 0.4434 −1.4339
8 0.8 −1.4339 −1.1295 −1.3893 0.4114 −1.3910
9 0.9 −1.3910 −1.1624 1.3497 0.3846 1.3511
10 1.0 −1.3511

Hence X(1.0) = −1.3511.

11 Taylor’s theorem states that

f(t + h) = f(t) + h
df

dt
(t) +

h2

2!
d2f

dt2
(t) +

h3

3!
d3f

dt3
(t) +

h4

4!
d4f

dt4
(t) + K

Applying this to
dx

dt
(t − h) and

dx

dt
(t − 2h) yields

dx

dt
(t − h) =

dx

dt
(t) − h

d2x

dt2
(t) +

h2

2!
d3x

dt3
(t) + O(h3)

dx

dt
(t − 2h) =

dx

dt
(t) − 2h

d2x

dt2
(t) +

4h2

2!
d3x

dt3
(t) + O(h3)

Multiplying the first equation by 2 and subtracting the second yields

2
dx

dt
(t − h) − dx

dt
(t − 2h) =

dx

dt
(t) − h2 d3x

dt3
(t) + O(h3)

that is, h2 d3x

dt3
(t) = −2

dx

dt
(t − h) +

dx

dt
(t − 2h) +

dx

dt
(t) + O(h3)

Multiplying the first equation by 4 and subtracting the second yields

4
dx

dt
(t − h) − dx

dt
(t − 2h) = 3

dx

dt
(t) − 2h

d2x

dt2
(t) + O(h3)

that is, 2h
d2x

dt2
(t) = −4

dx

dt
(t − h) +

dx

dt
(t − 2h) + 3

dx

dt
(t) + O(h3)

Now Taylor’s theorem yields

x(t + h) = x(t) + h
dx

dt
(t) +

h2

2!
d2x

dt2
+

h3

3!
d3x

dt3
(t) + O(h3)
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196 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

4 Splitting the mapping w = (1 − j)z into real and imaginary parts gives

u + jv = (1 − j)(x + jy)

= x + y + j(y − x)

that is, u = x + y

v = y − x

so that, u + v = 2y

Therefore y > 1 corresponds to u + v > 2.

5 Since w = jz + j

x = v − 1, y = −u

so that x > 0 corresponds to v > 1.

6 Since w = jz + 1

v = x

u = −y + 1

so that x > 0 ⇒ v > 0

and 0 < y < 2 ⇒ −1 < u < 1 or | u |< 1.

This is illustrated below
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396 Glyn James, Advanced Modern Engineering Mathematics, 4th Edition

x(k + 1) =
[

0.368 −0.1185
0.632 1

] [
x1(k)
x2(k)

]
+
[

0.1185 0
0.069 −1

] [
kc

1.1x1(0)

]

(c) Adopting the feedback control policy

u1(t) = kc − x2(t)

the given continuous-time state model becomes

ẋ =
[
−1 k1

1 0

]
x +

[
k1 0
0 −1

] [
kc

u2

]

Taking k1 = 3
16 and u2 = 1.1x1(0) this reduces to

ẋ =
[
−1 − 3

16
1 0

]
x +

[
3
16 0
0 −1

] [
kc

1.1x1(0)

]

(sI − Ac) =
[

s + 1 3
16

−1 s

]
⇒ (sI − Ac)−1 =

1
s2 + s + 3

16

[
s − 3

16
1 s + 1

]

⇒ (sI− Ac)−1 =

⎡
⎢⎢⎣

− 1
2

s + 1
4

+
3
2

s + 3
4

− 3
8

s + 1
4

+
3
8

s + 3
4

2
s + 1

4

− 2
s + 3

4

3
2

s + 1
4

−
1
2

s + 3
4

⎤
⎥⎥⎦

giving

eAct = L−1{(sI − Ac)−1} =
[
− 1

2e−
1
4 t + 3

2e−
3
4 t − 3

8e−
1
4 t + 3

8e−
3
4 t

2e−
1
4 t − 2e−

3
4 t 3

2e−
1
4 t − 1

2e−
3
4 t

]

The response of the continuous feedback system is

x(t) = eAct

[
x1(0)

kc

]
+
∫ t

0

eA(t−τ)dτB
[

kc

1.1x1(0)

]

Carrying out the integration and simplifying gives the response

x1(t) = x1(0)[1.1 − 2.15e−
1
4 t + 2.05e−

3
4 t]

x2(t) = kc + x1(0)[−5.867 + 8.6e−
1
4 t − 2.714e−

3
4 t]
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25 Write result 24 as∫ ∞

−∞
f(ω)F{g(t)}dω =

∫ ∞

−∞
F{f(t)}g(ω)dω

so
∫ ∞

−∞
f(ω)F{G(jt)}dω =

∫ ∞

−∞
F{f(t)}G(jω)dω

Now
g(t) → G(jω)

G(jt) → 2πg(−ω)
G(−jt) → 2πg(ω)

⎫⎬
⎭ symmetry

Thus,
∫ ∞

−∞
f(ω).2πg(ω)dω =

∫ ∞

−∞
F(jω)G(−jω)dω

or
∫ ∞

−∞
f(t)g(t) dt =

1
2π

∫ ∞

−∞
F(jω)G(−jω)dω

26 F{H(t) sinω0t}

=
1
2π

∫ ∞

−∞
πj
[
δ(ω − u + ω0) − δ(ω − u − ω0)

][
πδ(u) +

1
ju

]
du

=
j

2
[
πδ(ω + ω0) − πδ(ω − ω0)

]
+

1
2

[
1

ω + ω0
− 1

ω − ω0

]

=
πj

2
[
δ(ω + ω0) − δ(ω − ω0)

]
− ω0

ω2 − ω2
0

27

an =
A

T

∫ d/2

−d/2

e−jnω0t dt =
Ad

T
sinc

nω0d

2
, ω0 = 2π/T

f(t) =
Ad

T

∞∑
n=−∞

sinc
nω0d

2
ejnω0t,

F(jω) =
2πAd

T

∞∑
n=−∞

sinc
nω0d

2
δ(ω − nω0)

Exercises 8.6.6

28

T = 1, N = 4, Δω = 2π/(4 × 1) =
π

2
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