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TO THE INSTRUCTOR: I have tried to pay as much attention to detail in
these exercise solutions as I did in the problem solutions in the text. But
despite working through each solution numerous times during the various
stages of completion, there are bound to be errors. So please let me know if
anything looks amiss.

Also, to keep this pdf file from escaping to the web, PLEASE don’t distribute
it to anyone, with the exception of your teaching assistants. And please make
sure they also agree to this. Once this file gets free, there’s no going back.

In addition to any comments you have on these solutions, I welcome any
comments on the book in general. I hope you’re enjoying using it!

David Morin

morin@physics.harvard.edu

(Version 1, January 2013)
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Chapter 1

Electrostatics
Solutions manual for Electricity and Magnetism, 3rd edition, E. Purcell, D. Morin.

morin@physics.harvard.edu (Version 1, January 2013)

1.34. Aircraft carriers and specks of gold

The volume of a cube 1 mm on a side is 10−3 cm3. So the mass of this 1 mm cube is
1.93 · 10−2 g. The number of atoms in the cube is therefore

6.02 · 1023 · 1.93 · 10
−2 g

197 g
= 5.9 · 1019. (1)

Each atom has a positive charge of 1 e = 1.6 · 10−19 C, so the total charge in the cube
is (5.9 · 1019)(1.6 · 10−19 C) = 9.4C. The repulsive force between two such cubes 1 m
apart is therefore

F = k
q2

r2
=

(
9 · 109 kgm3

s2 C2

)
(9.4C)2

(1m)2
= 8 · 1011 N. (2)

The weight of an aircraft carrier is mg = (108 kg)(9.8m/s2) ≈ 109 N. The above F is
therefore equal to the weight of 800 aircraft carriers. This is just another example of
the fact that the electrostatic force is enormously larger than the gravitational force.

1.35. Balancing the weight

Let the desired distance be d. We want the upward electric force e2/4πϵ0d
2 to equal

the downward gravitational force mg. Hence,

d2 =
1

4πϵ0

e2

mg
=
(
9 · 109 kgm3

s2 C2

) (1.6 · 10−19 C)2

(9 · 10−31 kg)(9.8m/s2)
= 26m2, (3)

which gives d = 5.1m. The non-infinitesimal size of this answer is indicative of the
feebleness of the gravitational force compared with the electric force. It takes about
3.6·1051 nucleons (that’s roughly how many are in the earth) to produce a gravitational
force at an effective distance of 6.4 · 106 m (the radius of the earth) that cancels the
electrical force from one proton at a distance of 5 m. The difference in these distances
accounts for a factor of only 1.6 ·1012 between the forces (the square of the ratio of the
distances). So even if all the earth’s mass were somehow located the same distance
away from the electron as the single proton is, we would still need about 2 · 1039
nucleons to produce the necessary gravitational force.
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(b) Fig. 26 shows the field at points on a symmetrically-located hexagon. Let the

σ

σ σ

r
r

r

Figure 26

“radius” of the hexagon be r, and consider a hexagonal tube with length ℓ perpen-
dicular to the page. The surface area of this tube is 6rℓ, and the charge enclosed is
6rℓσ. Since the electric field is everywhere perpendicular to the surface, Gauss’s
law gives ∫

E · da =
Q

ϵ0
=⇒ E · 6rℓ = 6rℓσ

ϵ0
=⇒ E =

σ

ϵ0
, (71)

in agreement with the result in part (a). Again, note that E is independent of
r. While Gauss’s law is always valid, it was actually useful in the present setup
because we were able to find a simple surface that is everywhere perpendicular
to the electric field (because the electric field is uniform in each pie piece).

(c) For general N , the electric field is everywhere perpendicular to a regular 2N -gon.
The surface area of this 2N -gon is (2N)

(
2 sin(π/2N)

)
rℓ, and the charge enclosed

is (2N)rℓσ. So Gauss’s law gives

E · (2N)
(
2 sin(π/2N)

)
rℓ =

(2N)rℓσ

ϵ0
=⇒ E =

σ

2ϵ0 sin(π/2N)
. (72)

As expected, this is independent of r. And it agrees with the above result when
N = 3. For large N , we have sin(π/2N) ≈ π/2N , so E ≈ Nσ/πϵ0. In the case of
largeN , the sheets are very close to each other, so we effectively have a continuous
volume charge distribution that depends on r. The separation between adjacent
sheets grows linearly with r, so we have ρ(r) ∝ 1/r. More precisely, you can show
that ρ(r) = Nσ/πr. This is consistent with the result from Exercise 1.68, where
we found that a cylinder with a density of the form ρ(r) ∝ 1/r produces a field
whose magnitude is independent of r (inside the cylinder).

1.72. A plane and a slab

The total effective charge per unit area (looking perpendicular to the sheet/slab) is
σ+ρd, because ρ(Ad) is the charge contained within an area A of the slab. Let x = 0 be
defined to be the location of the plane. Then for x < 0 the field is E = −(σ+ρd)/2ϵ0,
and for x > d it is E = (σ + ρd)/2ϵ0. At a general point inside the slab (that is, for
0 < x ≤ d), there is a charge density σ + ρx to the left of the point and (d − x)ρ to
the right. So for 0 < x ≤ d the field is

σ + ρx

2ϵ0
− (d− x)ρ

2ϵ0
=

σ − ρd+ 2ρx

2ϵ0
. (73)

The plot of E as a function of x is shown in Fig. 27. E is continuous at x = d but not
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Figure 27

at x = 0. If the plane had a nonzero thickness, then the field would be continuous at
x = 0. The case shown in the plot has ρd > σ. If we instead had σ > ρd, then at the
discontinuity at x = 0, E would jump to a positive value.

1.73. Sphere in a cylinder

From the reasoning in the solution to Problem 1.27, the electric field inside a uniform
cylinder is E = ρr/2ϵ0, where r points away from the axis. And the electric field inside
a uniform sphere is E = ρr/3ϵ0, where r points away from the center.

The given setup may be considered to be the superposition of a uniform cylinder with
density ρ and a uniform sphere with density −3ρ/2. This produces the desired net
density of −ρ/2 within the sphere.
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68 CHAPTER 3. ELECTRIC FIELDS AROUND CONDUCTORS

so the total field at P due to the strip is

E(x) =

∫ x+b

x

σ dr

2πϵ0r
=

σ

2πϵ0
ln

(
x+ b

x

)
. (227)

If x → 0 this result diverges (slowly, like lnx). This divergence is what causes the
electric field at the corner of the square tube to diverge, for the following reason.

If we treat the corner like an exact point, then a cross section is shown in Fig. 68. The
x

xP

Figure 68

given point P is near the edges of two different strips (the two adjacent faces of the
tube). P doesn’t lie exactly in the plane of each strip, but this doesn’t matter. The
field from each strip differs from the field in part (a) by a finite additive amount, so it
still diverges as x → 0. This is true because if we ignore the “rods” in the strip that
are within a distance of, say, 5x from P , then P can be treated as essentially lying in
the plane of the remaining part of the strip. The effective value of x is now 6x, but the
factor of 6 doesn’t matter; the field still diverges as x→ 0. (This reasoning holds for
any location near the corner; P need not lie on the line of the angle bisector.) We are
concerned only with the component of the field that lies along the angle bisector, so
this brings in a factor of cos 45◦ = 1/

√
2 in the field from each strip. But this doesn’t

change the fact that the total field diverges.

If we treat the corner more realistically as curved (like a quarter circle), then the above
reasoning still applies. Ignoring the nearby part of the charge distribution still leaves
us with two strips that each produce an infinite field, in the limit where the radius of
curvature of the quarter circle goes to zero (assuming that P is close to the quarter
circle, on the order of the radius). If the radius does not go to zero, then the field
certainly doesn’t diverge. So the “corner” of the tube needs to be sharp in order for
the field to diverge.

We have been treating the charge density σ as constant. But in a conducting tube, the
density increases near the corners, because of the self-repulsion of the charges. This
has the effect of making the field even larger than the above reasoning would imply, so
the above conclusion of a diverging field is still valid. Since the conclusion is true for
both conducting and nonconducting tubes, the word “conducting” in the statement
of the problem could have been omitted.

In the case of a curved corner, if P is very close to the quarter circle (or whatever
curve), then we can draw a tiny Gaussian pillbox Fig. 69 to say that the field at P

P

Figure 69

equals σ/ϵ0. Since we just showed that the field diverges, this implies that the density
also diverges at the corner. Intuitively, if it didn’t diverge, then there wouldn’t exist
a sufficient force to keep the charges in the straight parts of Fig. 69 from flowing onto
the curved part. So this would eventually lead to a very large density at the corner
anyway.

All of the above reasoning still holds if the cross section of the tube is something
other than a square. At any point where the direction of the surface changes abruptly,
the field diverges. Even for a polygon with 100 sides, in which the surface bends by
only a few degrees at each “corner,” the field still diverges, because when taking the
component along the angle bisector, the nonzero trig factor doesn’t change the fact
that the total field diverges.

If we kick things down a dimension and look at a kink in a wire, the field still diverges
(even more quickly). This is true because the field near the end of a uniform stick
diverges; Eq. (227) is replaced by

E(x) =

∫ x+b

x

λ dr

4πϵ0r2
=

λ

4πϵ0

(
1

x
− 1

x+ b

)
. (228)
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98 CHAPTER 4. ELECTRIC CURRENTS

This current lasts for a time t = ℓ/v = (0.002m)/(106 m/s) = 2 · 10−9 s, which
is 2 nanoseconds. The current is constant during this time, so we have the bold
line shown in Fig. 86. The total charge that flows during this time is It, which

1

1

2

2

3

t (10
-9 s)

I (10
-10 A)

Figure 86

equals 2e as expected.

If the path slopes upward at 45◦, then dx/dt = v cos 45◦. From above, the current
pulse is therefore reduced in amplitude by a factor 1/

√
2 and stretched out in time

by a factor
√
2; see the dotted line in Fig. 86. Again the total charge transferred

is It = 2e.

(b) Following the strategy of the solution to Exercise 3.37, we know that if Q1 and Q2

are the charges on the inner and outer electrodes (with radii a and b, respectively),
then Q1 +Q2 = −2e. How is the charge of −2e distributed between Q1 and Q2

when the alpha particle is at radius r? As in Exercise 3.37, the key points are
that (1) we can smear out the alpha particle into a cylinder of charge, and (2) the
potentials of the two electrodes are the same, which means that the line integrals
of the electric field from radius r to the two electrodes must be equal. The field
inside radius r is proportional to Q1/r (this points inward since Q1 is negative),
and the field outside radius r is proportional to (2e+Q1)/r = −Q2/r (this points
outward since Q2 is negative). Equating the two line integrals gives (note that
both sides of the following equation are positive since dr is negative in the left
integral) ∫ a

r

Q1

r
dr =

∫ b

r

−Q2

r
dr =⇒ Q1 ln(a/r) = −Q2 ln(b/r)

=⇒ Q1 ln(r/a) = Q2 ln(b/r). (334)

Combining this equation with Q1 +Q2 = −2e and solving for Q1 and Q2 gives

Q1 =
−(2e) ln(b/r)

ln(b/a)
and Q2 =

−(2e) ln(r/a)
ln(b/a)

. (335)

The current flowing out of the outer cylinder is then

I = −dQ2

dt
=

2e

ln(b/a)

d(ln r)

dt
=

2e

ln(b/a)

1

r

dr

dt
=

2ev

ln(b/a)

1

a+ vt
, (336)

where we have used r = a + vt. We see that I(t) is not constant. A plot of
the general shape of I(t) is shown in Fig. 87 (with b chosen to equal 4a). For a

I

t

Figure 87

given value of b, if a is very small then the current starts out very large, because
at t = 0 the smallness of a in the denominator in Eq. (336) wins out over the
largeness of ln(b/a).

In the case of a 45◦ angle of the path, the same modifications that applied in
part (a) also apply here. That is, the curve is stretched horizontally by a factor
of
√
2, and squashed vertically by a factor of 1/

√
2.

4.22. Transatlantic cable

(a) The resistance of the seven wires together is

R =
ρL

A
=

(3 · 10−8 Ωm)(3 · 106 m)

7 · π(3.65 · 10−4 m)2
= 3.1 · 104 Ω. (337)

Adding seven resistors in parallel would give the same answer.
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Chapter 11

Magnetic fields in matter
Solutions manual for Electricity and Magnetism, 3rd edition, E. Purcell, D. Morin.

morin@physics.harvard.edu (Version 1, January 2013)

11.12. Earth dipole

(a) Equation (11.15) gives the field at position R along the axis of a dipole as Br =
µ0m/2πR3, so

m =
2πR3Br

µ0
=

2π(6.4 · 106 m)3(6.2 · 10−5 T)

4π · 10−7 kgm
C2

= 8.1 · 1022 J/T. (697)

(b) Equation (6.53) gives the field at position z on the axis of a current ring as
Bz = µ0Ib

2/2(z2 + b2)3/2. If R is the radius of the earth, then we have z = R
and b ≈ R/2, so in terms of R the field is Bz = µ0I/(5

3/2R). Therefore,

I =
53/2RBz

µ0
=

53/2(6.4 · 106 m)(6.2 · 10−5 T)

4π · 10−7 kgm
C2

= 3.5 · 109 A. (698)

If we instead treat the current ring as a dipole with moment m = 8.1 · 1022 J/T,
then we have

m = I(πb2) =⇒ I =
m

π(R/2)2
=

4(8.1 · 1022 J/T)

π(6.4 · 106 m)2
= 2.5 · 109 A, (699)

which is a so-so approximation to the correct result of 3.5 · 109 A.

11.13. Disk dipole

Let’s divide the disk into rings and then add up the magnetic moments of all the
rings. The surface current density at radius r is σv, where v = ωr. This is true
because σℓ(v dt) is the amount of charge that crosses a transverse segment with length
ℓ in a time dt. So the charge per time per unit transverse length (that is, the surface
current density) equals σℓ(v dt)/(ℓ dt) = σv.

The current in a given ring with radius r and thickness dr is therefore Ir = (σv)dr =
σωr dr. The magnetic moment of this ring is then Ir(πr

2) = πσωr3 dr. Integrating
from r = 0 to r = R gives the total magnetic moment of the disk as πσωR4/4.

205

https://buklibry.com/download/solutions-manual-of-electricity-and-magnetism-by-purcell-3rd-edition/

Download full file from buklibry.com




