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Chapter 1

Introduction to Differential Equations

1.1 Definitions and Terminology

1. Second order; linear

2. Third order; nonlinear because of (dy/dx)4

3. Fourth order; linear

4. Second order; nonlinear because of cos(r + u)

5. Second order; nonlinear because of (dy/dx)2 or
√

1 + (dy/dx)2

6. Second order; nonlinear because of R2

7. Third order; linear

8. Second order; nonlinear because of ẋ2

9. Writing the differential equation in the form x(dy/dx) + y2 = 1, we see that it is nonlinear
in y because of y2. However, writing it in the form (y2 − 1)(dx/dy) + x = 0, we see that it is
linear in x.

10. Writing the differential equation in the form u(dv/du)+(1+u)v = ueu we see that it is linear
in v. However, writing it in the form (v+uv−ueu)(du/dv)+u = 0, we see that it is nonlinear
in u.

11. From y = e−x/2 we obtain y′ = −1
2e−x/2. Then 2y′ + y = −e−x/2 + e−x/2 = 0.

12. From y = 6
5 − 6

5e−20t we obtain dy/dt = 24e−20t, so that

dy

dt
+ 20y = 24e−20t + 20

(
6
5
− 6

5
e−20t

)
= 24.

13. From y = e3x cos 2x we obtain y′ = 3e3x cos 2x−2e3x sin 2x and y′′ = 5e3x cos 2x−12e3x sin 2x,
so that y′′ − 6y′ + 13y = 0.

1
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198 CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

58. Writing cos2 x = 1
2(1 + cos 2x) and applying D(D2 + 4) to the differential equation we obtain

D(D2 + 4)(D2 + 4) = D(D2 + 4)2 = 0.

Then
y = c1 cos 2x + c2 sin 2x︸ ︷︷ ︸

yc

+ c3x cos 2x + c4x sin 2x + c5

and yp = Ax cos 2x + Bx sin 2x + C. Substituting yp into the differential equation yields

−4A sin 2x + 4B cos 2x + 4C =
1
2

+
1
2

cos 2x.

Equating coefficients gives A = 0, B = 1/8, and C = 1/8. The general solution is

y = c1 cos 2x + c2 sin 2x +
1
8
x sin 2x +

1
8
.

59. Applying D3 to the differential equation we obtain

D3(D3 + 8D2) = D5(D + 8) = 0.

Then
y = c1 + c2x + c3e

−8x︸ ︷︷ ︸
yc

+ c4x
2 + c5x

3 + c6x
4

and yp = Ax2 + Bx3 + Cx4. Substituting yp into the differential equation yields

16A + 6B + (48B + 24C)x + 96Cx2 = 2 + 9x − 6x2.

Equating coefficients gives

16A + 6B = 2

48B + 24C = 9

96C = −6.

Then A = 11/256, B = 7/32, and C = −1/16, and the general solution is

y = c1 + c2x + c3e
−8x +

11
256

x2 +
7
32

x3 − 1
16

x4.

60. Applying D(D − 1)2(D + 1) to the differential equation we obtain

D(D − 1)2(D + 1)(D3 − D2 + D − 1) = D(D − 1)3(D + 1)(D2 + 1) = 0.

Then
y = c1e

x + c2 cos x + c3 sinx︸ ︷︷ ︸
yc

+ c4 + c5e
−x + c6xex + c7x

2ex
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298 CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

57. Solving 1
2q′′ + 10q′ + 100q = 150 we obtain q(t) = e−10t(c1 cos 10t + c2 sin 10t) + 3/2. The

initial conditions q(0) = 1 and q′(0) = 0 imply c1 = c2 = −1/2. Thus

q(t) = −1
2
e−10t(cos 10t + sin 10t) +

3
2

.

As t → ∞, q(t) → 3/2.

58. In Problem 54 it is shown that the amplitude of the steady-state current is E0/Z, where
Z =

√
X2 + R2 and X = Lγ − 1/Cγ. Since E0 is constant the amplitude will be a maximum

when Z is a minimum. Since R is constant, Z will be a minimum when X = 0. Solving
Lγ − 1/Cγ = 0 for γ we obtain γ = 1/

√
LC . The maximum amplitude will be E0/R.

59. By Problem 54 the amplitude of the steady-state current is E0/Z, where Z =
√

X2 + R2

and X = Lγ − 1/Cγ. Since E0 is constant the amplitude will be a maximum when Z is a
minimum. Since R is constant, Z will be a minimum when X = 0. Solving Lγ − 1/Cγ = 0
for C we obtain C = 1/Lγ2.

60. Solving 0.1q′′ + 10q = 100 sin γt we obtain

q(t) = c1 cos 10t + c2 sin 10t + qp(t)

where qp(t) = A sin γt + B cos γt. Substituting qp(t) into the differential equation we find

(100 − γ2)A sin γt + (100 − γ2)B cos γt = 100 sin γt.

Equating coefficients we obtain A = 100/(100−γ2) and B = 0. Thus, qp(t) =
100

100 − γ2
sin γt.

The initial conditions q(0) = q′(0) = 0 imply c1 = 0 and c2 = −10γ/(100 − γ2). The charge
is

q(t) =
10

100 − γ2
(10 sin γt − γ sin 10t)

and the current is
i(t) =

100γ

100 − γ2
(cos γt − cos 10t).

61. In an LC-series circuit there is no resistor, so the differential equation is

L
d2q

dt2
+

1
C

q = E(t).

Then q(t) = c1 cos
(
t/
√

LC
)

+ c2 sin
(
t/
√

LC
)

+ qp(t) where qp(t) = A sin γt + B cos γt.

Substituting qp(t) into the differential equation we find(
1
C

− Lγ2

)
A sin γt +

(
1
C

− Lγ2

)
B cos γt = E0 cos γt.

Equating coefficients we obtain A = 0 and B = E0C/(1 − LCγ2). Thus, the charge is

q(t) = c1 cos
1√
LC

t + c2 sin
1√
LC

t +
E0C

1 − LCγ2
cos γt.
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398 CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

From the last result and using ν = 3/2 we obtain

3J3/2(x) = xJ5/2(x) + xJ1/2(x)

J5/2(x) =
3
x

J3/2(x) − J1/2(x)

=
3
x

√
2

πx

(
sin x

x
− cos x

)
−
√

2
πx

sinx

=

√
2

πx

[(
3
x2

− 1
)

sinx − 3 cos x

x

]

From the last result and using ν = 5/2 we obtain

5J5/2(x) = xJ7/2(x) + xJ3/2(x)

J7/2(x) =
5
x

J5/2(x) − J3/2(x)

=
5
x

√
2

πx

(
3 sin x

x2
− 3 cos x

x
− sinx

)
−
√

2
πx

(
sinx

x
− cos x

)

=

√
2

πx

[(
15
x3

− 6
x

)
sin x −

(
15
x2

− 1
)

cos x

]

33. (a) To find the spherical Bessel functions j1(x) and j2(x) we use the first formula in (30),

jn(x) =
√

π

2x
Jn+1/2

with n = 1 and n = 2,

j1(x) =
√

π

2x
J3/2(x) and j2(x) =

√
π

2x
J5/2(x) .

Then from Problem 32 we have

J3/2(x) =
√

2πx

(
sinx

x
− cos x

)
so j1(x) =

sin x

x2
− cos x

x

and

J5/2(x) =
√

2πx

(
3 sin x

x2
− 3 cos x

x
− sinx

)
so j2(x) =

(
3
x3

− 1
x

)
sin x − 3 cos x

x2

(b) Using a graphing utility to plot the graphs of
j1(x) and j2(x), we get the red and blue graphcs
in the figure to the right.
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498 CHAPTER 7 THE LAPLACE TRANSFORM

31. f(t) = 2 − 2U (t − 2) + [(t − 2) + 2]U (t − 2) = 2 + (t − 2)U (t − 2)

L {f(t)} =
2
s

+
1
s2

e−2s

L
{
etf(t)
}

=
2

s − 1
+

1
(s − 1)2

e−2(s−1)

32. f(t) = t− tU (t−1)+(2− t)U (t−1)− (2− t)U (t−2) = t−2(t−1)U (t−1)+(t−2)U (t−2)

L {f(t)} =
1
s2

− 2
s2

e−s +
1
s2

e−2s

L
{
etf(t)
}

=
1

(s − 1)2
− 2

(s − 1)2
e−(s−1) +

1
(s − 1)2

e−2(s−1)

33. The graph of

f(t) = −1 + 2
∞∑

k=1

(−1)k+1 U (t − k) = −1 + 2U (t − 1) − 2U (t − 2) + 2U (t − 3) − · · ·

is

1 2 3 4 5 6
t

�1

1

y

One way of proceeding to find the Laplace transform is to take the transform term-by-term
of the series:

L {f(t)} = −1
s

+
2
s

e−s − 2
s

e−2s +
2
s

e−3s − · · · ←− geometric series

For s > 0,

L {f(t)} = −1
s

+
2
s

[
e−s − e−2s + e−3s − · · ·

]
= −1

s
+

2
s
· e−s

1 + e−s

=
e−s − 1

s (1 + e−s)

Alternatively, since f is a periodic functions it can also be defined by

f(t) =

{
−1, 0 ≤ t < 1

1, 1 ≤ t < 2,
where f(t + 2) = f(t).
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698 CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

I. If λ = 0 then X ′′ = 0 and X(x) = c1x+c2. Also Y ′′−Y = 0 and Y (y) = c3 cosh y+c4 sinh y

so
u = XY = (c1x + c2)(c3 cosh y + c4 sinh y).

II. If λ = −α2 < 0 then X ′′ − α2X = 0 and Y ′′ + (α2 − 1)Y = 0. The solution of the first
differential equation is X(x) = c5 cosh αx + c6 sinh αx. The solution of the second differential
equation depends on the nature of α2 − 1. We consider three cases:

(i) If α2 − 1 = 0, or α2 = 1, then Y (y) = c7y + c8 and

u = XY = (c5 cosh αx + c6 sinh αx)(c7y + c8).

(ii) If α2−1 < 0, or 0 < α2 < 1, then Y (y) = c9 cosh
√

1 − α2 y + c10 sinh
√

1 − α2 y and

u = XY = (c5 cosh αx + c6 sinh αx)
(
c9 cosh

√
1 − α2 y + c10 sinh

√
1 − α2 y

)
.

(iii) If α2 − 1 > 0, or α2 > 1, then Y (y) = c11 cos
√

α2 − 1 y + c12 sin
√

α2 − 1 y and

u = XY = (c5 cosh αx + c6 sinh αx)
(
c11 cos

√
α2 − 1 y + c12 sin

√
α2 − 1 y

)
.

III. If λ = α2 > 0, then X ′′ + α2X = 0 and X(x) = c13 cos αx + c14 sinαx. Also,

Y ′′ − (1 + α2)Y = 0 and Y (y) = c15 cosh
√

1 + α2 y + c16 sinh
√

1 + α2 y so

u = XY = (c13 cos αx + c14 sin αx)
(
c15 cosh

√
1 + α2 y + c16 sinh

√
1 + α2 y

)
.

16. Substituting u(x, t) = X(x)T (t) into the partial differential equation yields a2X ′′T−g = XT ′′,
which is not separable.

17. Identifying A = B = C = 1, we compute B2 − 4AC = −3 < 0. The equation is elliptic.

18. Identifying A = 3, B = 5, and C = 1, we compute B2 − 4AC = 13 > 0. The equation is
hyperbolic.

19. Identifying A = 1, B = 6, and C = 9, we compute B2 − 4AC = 0. The equation is parabolic.

20. Identifying A = 1, B = −1, and C = −3, we compute B2 − 4AC = 13 > 0. The equation is
hyperbolic.

21. Identifying A = 1, B = −9, and C = 0, we compute B2 − 4AC = 81 > 0. The equation is
hyperbolic.

22. Identifying A = 0, B = 1, and C = 0, we compute B2 − 4AC = 1 > 0. The equation is
hyperbolic.

23. Identifying A = 1, B = 2, and C = 1, we compute B2 − 4AC = 0. The equation is parabolic.
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798 CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

so
A0 = 0, A1 + B1 = 0, C1 + D1 = 75,

and
An + Bn = 0, Cn + Dn = 0, for n > 1.

When r = 2

A0 + B0 ln 2 =
1
2π

ˆ 2π

0
60 cos θ dθ = 0

An2n + Bn2−n =
1
π

ˆ 2π

0
60 cos θ cos nθ dθ =

{
0, n > 1

60, n = 1

Cn2n + Dn2−n =
1
π

ˆ ∞

0
60 cos θ sinnθ dθ = 0, n = 1, 2, . . . ,

so
B0 = 0, 2A1 +

1
2

B1 = 60, 2C1 +
1
2

D1 = 0,

and
An2n + Bn2−n = 0, Cn2n + Dn2−n = 0, for n > 1.

Whe have A0 = 0 and B0 = 0, and solving the nonhomogeneous systems for n = 1,

A1 + B1 = 0 C1 + D1 = 75

2A1 +
1
2

B1 = 60 2C1 +
1
2

D1 = 0

yields A1 = 40, B1 = −40, C1 = −25, and D1 = 100. Finally, solving the homogeneous
systems

An + Bn = 0 Cn + Dn = 0

An2n + Bn2−n = 0 Cn2n + Dn2−n = 0

gives An = Bn = Cn = Dn = 0 for n > 1. The solution is then

u(r, θ) =
(
A1r + B1r

−1
)
cos θ +

(
C1r + D1r

−1
)
sin θ

=
(
4 − r − 40r−1

)
cos θ +

(
−25r + 100r−1

)
sin θ

= 40
(

r − 1
r

)
cos θ − 25

(
r − 4

r

)
sin θ.

14. We solve

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
= 0, 0 < θ < π , a < r < b,

u(a, θ) = θ(π − θ), u(b, θ) = 0, 0 < θ < π ,

u(r, 0) = 0, u(r, π) = 0, a < r < b.
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898 CHAPTER 14 INTEGRAL TRANSFORMS

By writing the boundary condition x = 0 as

u(0, t) = u0 − u0U (t − 1)

its transform is

U(0, s) =
u0

s
− u0

s
e−s

c1 =
u0

s
− u0

s
e−s

U(x, s) = u0
e−

√
s x

s
− u0

e−
√

s x

s
e−s

u(x, t) = u0L
−1

{
e−

√
s x

s

}
− u0L

−1

{
e−

√
s x

s
e−s

}

by entry 3 of Table 14.1.1 and the inverse form of the second translation theorem that:

u(x, t) = u0 erfc
(

x

2
√

t

)
− u0 erfc

(
x

2
√

t − 1

)
U (t − 1)

or

u(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0 erfc
(

x

2
√

t

)
, 0 < t < 1

u0 erfc
(

x

2
√

t

)
− u0 erfc

(
x

2
√

t − 1

)
, t > 1 .

18. The Laplace transform with respect to t of the partial differential equation gives

d2U

dx2
− sU = −50 so U(x, s) = c1e

−√
sx + c2e

√
sx +

50
s

.

The boundary condition

lim
x→∞

u(x, t) = 50 implies lim
x→∞

U(x, s) =
50
s

so we take c2 = 0. Thus

U(x, s) = c1e
−√

sx +
50
s

.

The transform of the boundary condition at x = 0 is

U(0, s) =
100
s

e−5s − 100
s

e−10s.

Since
100
s

e−5s − 100
s

e−10s = c1 +
50
s

we have
c1 = −50

s
+

100
s

e−5s − 100
s

e−10s
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