PART D

Complex
Analysis

Chap. 13 Complex Numbers and Functions.
Complex Differentiation

Complex numbers appeared in the textbook before in different topics. Solving linear homogeneous ODEs
led to characteristic equations, (3), p. 54 in Sec. 2.2, with complex numbers in Example 5, p. 57, and
Case III of the table on p. 58. Solving algebraic eigenvalue problems in Chap. 8 led to characteristic
equations of matrices whose roots, the eigenvalues, could also be complex as shown in Example 4, p. 328.
Whereas, in these type of problems, complex numbers appear almost naturally as complex roots of
polynomials (the simplest being x2 + 1 = 0), it is much less immediate to consider complex analysis—the
systematic study of complex numbers, complex functions, and “complex” calculus. Indeed, complex
analysis will be the direction of study in Part D. The area has important engineering applications in
electrostatics, heat flow, and fluid flow. Further motivation for the study of complex analysis is given on
p. 607 of the textbook.

We start with the basics in Chap. 13 by reviewing complex numbers z = x + yi in Sec. 13.1 and
introducing complex integration in Sec.13.3. Those functions that are differentiable in the complex, on
some domain, are called analytic and will form the basis of complex analysis. Not all functions are
analytic. This leads to the most important topic of this chapter, the Cauchy—Riemann equations (1),

p- 625 in Sec. 13.4, which allow us to test whether a function is analytic. They are very short but you have
to remember them! The rest of the chapter (Secs. 13.5-13.7) is devoted to elementary complex functions
(exponential, trigonometric, hyperbolic, and logarithmic functions).

Your knowledge and understanding of real calculus will be useful. Concepts that you learned in real
calculus carry over to complex calculus; however, be aware that there are distinct differences between
real calculus and complex analysis that we clearly mark. For example, whereas the real equation e* = 1
has only one solution, its complex counterpart e* = 1 has infinitely many solutions.
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Sec. 13.1 Complex Numbers and Their Geometric Representation

Much of the material may be familiar to you, but we start from scratch to assure everyone starts at the
same level. This section begins with the four basic algebraic operations of complex numbers (addition,
subtraction, multiplication, and division). Of these, the one that perhaps differs most from real numbers is
division (or forming a quotient). Thus make sure that you remember how to calculate the quotient of two
complex numbers as given in equation (7), Example 2, p. 610, and Prob. 3. In (7) we take the number z,
from the denominator and form its complex conjugate z, and a new quotient Z,/Z,. We multiply the given
quotient by this new quotient Z,/Z, (which is equal to 1 and thus allowed):

21 _ o1 | = 71 In
oz Iz I
which we multiply out, recalling that ;> = —1 [see (5), p. 609]. The final result is a complex number in a
form that allows us to separate its real (Re z) and imaginary (Im z) parts. Also remember that 1/i = —i

(see Prob. 1), as it occurs frequently. We continue by defining the complex plane and use it to graph
complex numbers (note Fig. 318, p. 611, and Fig. 322, p. 612). We use equation (8), p. 612, to go from
complex to real.

Problem Set. 13.1. Page 612

1. Powers of i. We compute the various powers of i by the rules of addition, subtraction,
multiplication, and division given on pp. 609-610 of the textbook. We have formally that

2 =ii

= (0,1)(0, 1) [by (1), p. 609]
an =0-0-1-1,0-14+1-0) [by (3), p. 609]

= (0-1,0+0) (arithmetic)

= (-1,0)

= -1 [by (D],

where in (3), that is, multiplication of complex numbers, weused x; = 0,x, =0, y; =1, y, = 1.
(I12) i*=i%=(=1)-i =—i.

Here we used (I1) in the second equality. To get (I3), we apply (I2) twice:

(13) i*=i%?=(-1)-(-1) = 1.

(14) iP=iti=1-i=i,

and the pattern repeats itself as summarized in the table below.
We use (7), p. 610, in the following calculation:

1 1i 1(-=i) ((A40i)O0—i) 1-0+0-1 0-0—1-1 _ ,
I5) T == = ; — = + i =0—i =—i.
i ii i(=i) 0+i)(0—1i) 02+ 12 02 + 12
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Thus
eF = X Y Hi2xy _ px?=y? idxy [by (3), p. 630].
Now
€2 = cos(2xy) + i sin(2xy) [by (1), p. 630; (5), p. 631].

19.

Putting it together

2

e = exz_yz[cos(2xy) + i sin(2xy)]
= e cos 2xy + i(exz_y2 sin2xy).
Hence
Re [exp(zz)] = e cos 2xy; Im [exp(zz)] = e gin 2xy,
as given on p. A36 of the textbook.
Equation. To solve
(A) e =1
we set z = x 4 iy. Then
e? = et = e¥e” = e¥(cosy +isiny)  [by (5),p.631]
=e cosy+ie*siny
=1 [by (A)]
=1+41i-0.

Equate the real and imaginary parts on both sides to obtain
(B) Re(e?) =e cosy =1, (C) Im(e?) =e*siny =0.
Since e¢* > 0 but the product in (C) must equal zero requires that
siny =0 whichmeansthat (D) y =0,+n, £27, £3n,....

Since the product in (B) is positive, cos y has to be positive. If we look at (D), we know that cos y is
—1for y = £m, 37, 57, ... but +1 for y = 0, +27, £4m,.... Hence (B) and (D) give

(E) y =0,+2n, +47,. ...

Since (B) requires that the product be equal to 1 and the cosine for the values of y in (E) is 1, we
have e* = 1. Hence

(F) x =0.
Then (E) and (F) together yield
x=0 y=0,%£2n,+4m,...,
and the desired solution to (A) is
z=Xx-+yi = £2nmi, n=0,12,....

Note that (A), being complex, has infinitely many solutions in contrast to the same equation in real,
which has only one solution.
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so that the final result is

lim an | = im 2n+2=hm Zn’jzzlimz—i_%
n—o00 | @ n—>oo 2pn + 1 n—soo 21+l n—oo 2 + 1
n+1 n n
. 2
lim 24+1) 2+0 2
n—>oo

Thus the series converges in the open disk |z — 2i | < 1 of radius R = 1 and center 2i.

Sec. 15.3 Functions Given by Power Series

We now give some theoretical foundations for power series and show how we can develop a new power
series from an existing one. This can be done in two ways. We can differentiate a power series term by
term without changing the radius of convergence (Theorem 3, p. 687, Example 1, p. 688, Prob. 5).
Similarly, we can integrate (Theorem 4, p. 688, Prob. 9). Most importantly, Theorem 5, p. 688, gives the
reason why power series are of central importance in complex analysis since power series are analytic and
so are “differentiated” power series (with the radius of convergence preserved).

Problem Set 15.3. Page 689

5. Radius of convergence by differentiation: Theorem 3, p. 687. We start with the geometric series

o0 _ . n _ . _ . 2 _ . 3
A) g(z)=2(2 221) =1+2221+(z 221) +(z 221) N

n=0

Using Example 1, p. 680, of Sec. 15.2, we know that it converges for

|z —2i |
2

Theorem 3, p. 687, allows us to differentiate the series in (A), termwise, with the radius of
convergence preserved. Hence we get
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o0 .
-2 n—1
:Zn(zznl) where |z —2i| <2.
n=1

<1 and thus for |z —2i| < 2.

Note that we sum from n = 1 because the term for n = 0 is 0.
Applying Theorem 3 to (B) yields

o0 _ _ A\n—2
(©) g'@=3 n(n 1)(22,1 21) where |z —2i|<2.

n=2

From (C) it follows that

2 n(n—1)(z —2i)"

(D) (z-2i)%g"(z) =) o
n=2
> z—2i\" .
:Zn(n—l)( 7 ) where |z —2i| <2.
n=2

But (D) is precisely the given series.
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This is the y-axis. Then
mePelztcl=y+es 2=y ai=o
|z + c|
This shows that the y-axis has potential 0.
We can now continue with (B), assuming that K # 1. Collecting terms in (B), we have
A—K)x*+y*+c*)—2cx(1+K)=0.
Division by 1 — K (5 0 because K # 1) gives
1+ K
x> 4+y>+c>—2Lx =0 where L:w.
1-K
Completing the square in x, we finally obtain
(x—L)*4+y?=L%—-c%
This is a circle with center at L on the real axis and radius v L? — ¢2.
We simplify +/ L2 — ¢? as follows. First, we consider
1+K)7?
L? —c* = |:C(+)i| —c? (by inserting L)
1-K
_c*1+K)?
- (1-K)
1+ K)?
= C2 7( + ) - 1
(1-K)?
[+ K)? (1-K)?
= C —
(1-K)> (1-K)?
,1+2K + K*—(1-2K—K?)
=c
(1-K)?
4K
(1= K)%
Hence
24K? 2K 2ck?
Jiz—ez= | € = C == (using K = k?).
1-K)? 1-K 1-k?
Thus the radius equals 2ck? /(1 — k?).
15. Potential in a sector. To solve the given problem, we note that

22 = (x +iy)? = x*>—y* 4+ 2ixy
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From Row 2, with Columns 3 and 6, we see that

Now x, appears in the second constraint, written as equation, that is,
2X1 + SXZ + X4 = 10.

Inserting x, = % and x, = % gives

2x1 +10 =10, hence x; =0.
Hence

the minimum — 10 of z = f(x1, x2) occurs at the point (O, %) .

Since this problem involves only two variables (not counting the slack variables), as a control and to
better understand the problem, you may want to graph the constraints. You will notice that they
determine a quadrangle. When you calculate the values of f at the four vertices of the quadrangle,
you should obtain

0at (0,0),25at (5,0), —7.5at (2.5,1),and —10at (0, 3).

This would confirm our result.

Sec. 22.4 Simplex Method. Difficulties

Of lesser importance are two types of difficulties that are encountered with the simplex method:
degeneracy, illustrated in Example 1 (pp. 962-965), Problem 1 and difficulties in starting, illustrated in
Example 2 (pp. 965-967).

Problem Set 22.4. Page 968
1. Degeneracy. Choice of pivot. Undefined quotient. The given problem is

z = fi(x) = Tx; + 14x,
subject to
0=<x1 <6,
0<xp =<3,

Tx1 + 14x, < 84.
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6. Vertex 6is in T and its adjacent vertices 1, 3, 5 are in S.

Since none of the six steps gave us any contradiction, we conclude that the given graph in this problem
is bipartite. Take another look at the figure of our graph on p. 1005 to realize that, although the number of
vertices and edges is small, the present problem is not completely trivial. We can sketch the graph in such
a way that we can immediately see that it is bipartite.

17. K, is planar because we can graph it as a square A, B, C, D, then add one diagonal, say, A, C,
inside, and then join B, D not by a diagonal inside (which would cross) but by a curve outside the
square.

Answer to question on greedy algorithm (see p. 10 in Sec. 23.4 of this Student Solutions
Manual and Study Guide). Yes, definitely, Dijkstra’s algorithm is an example of a greedy
algorithm, as in Steps 2 and 3 it looks for the shortest path between the current vertex and the next
vertex.

Answer to self-test on Prim’s and Dijkstra’s algorithms (see p. 12 of Sec. 23.5). Yes, since
both trees are spanning trees.
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