PART A

Ordinary
Differential
Equations (ODEs)

Chap.1 First-Order ODEs

Sec. 1.1 Basic Concepts. Modeling

To get a good start into this chapter and this section, quickly review your basic calculus. Take a look at
the front matter of the textbook and see a review of the main differentiation and integration formulas. Also,
Appendix 3, pp. A63—A66, has useful formulas for such functions as exponential function, logarithm, sine
and cosine, etc. The beauty of ordinary differential equations is that the subject is quite systematic and has
different methods for different types of ordinary differential equations, as you shall learn. Let us discuss
some Examples of Sec. 1.1, pp. 4-7.

Example 2, p. 5. Solution by Calculus. Solution Curves. To solve the first-order ordinary
differential equation (ODE)

y = cosx

means that we are looking for a function whose derivative is cos x. Your first answer might be that the
desired function is sin x, because (sin x)’ = cos x. But your answer would be incomplete because also
(sinx 4 2)’ = cos x, since the derivative of 2 and of any constant is 0. Hence the complete answer is
y= cosx + ¢, where c is an arbitrary constant. As you vary the constants you get an infinite family
of solutions. Some of these solutions are shown in Fig. 3. The lesson here is that you should never
forget your constants!

Example 4, pp. 6-7. Initial Value Problem. In an initial value problem (IVP) for a first-order ODE
we are given an ODE, here y' = 3y, and an initial value condition y(0) =5.7. For such a problem, the
first step is to solve the ODE. Here we obtain y(x) = ce>* as shown in Example 3, p. 5. Since we also
have an initial condition, we must substitute that condition into our solution and get y(0) = ce’0 =
ce® =c-1=c=5.7. Hence the complete solution is y(x) =5 .7¢3*. The lesson here is that for an

initial value problem you get a unique solution, also known as a particular solution.
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Modeling means that you interpret a physical problem, set up an appropriate mathematical model,
and then try to solve the mathematical formula. Finally, you have to interpret your answer.
Examples 3 (exponential growth, exponential decay) and 5 (radioactivity) are examples of modeling
problems. Take a close look at Example 5, p. 7, because it outlines all the steps of modeling.
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3.

11.

Calculus. From Example 3, replacing the independent variable ¢ by x we know that y’ =0.2y has a
solution y = 0.2¢¢%2*. Thus by analogy, y’ = y has a solution

1-ce'™ = ce,

where c is an arbitrary constant.
Another approach (to be discussed in details in Sec. 1.3) is to write the ODE as

dy_

dx =

and then by algebra obtain
1
dy =ydx, sothat -—-dy=dx.
y

Integrate both sides, and then apply exponential functions on both sides to obtain the same
solution as above

1 X X
/ —dy = /dx, Inly| =x+ec, DI — prte, y=-¢"-e‘ =c"e,
y

(where ¢* = ¢ is a constant).

The technique used is called separation of variables because we separated the variables, so that y
appeared on one side of the equation and x on the other side before we integrated.

Solve by integration. Integrating y’ = cosh 5.13x we obtain (chain rule!) y = [cosh5.13x dx
= ﬁ(sinh 5.13x) + c¢. Check: Differentiate your answer:

/
(ﬁ(sinh 5.13x) + c) = ﬁ(cosh 5.13x) - 5.13 = cosh 5.13x, which is correct.
Initial value problem (IVP). (a) Differentiation of y = (x + ¢)e* by product rule and definition of
y gives
y ="+ (x+co) = +y.

But this looks precisely like the given ODE y’ = ¢* 4+ y. Hence we have shown that indeed
y=(x+ c¢)e* is a solution of the given ODE. (b) Substitute the initial value condition into
the solution to give y(0) = (0 + o)el=c-1= % Hence ¢ = % so that the answer to the IVP is

y=(x+ %)ex.

(c) The graph intersects the x-axis at x = 0.5 and shoots exponentially upward.
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Three cases appear, as for those other ODEs, and Fig. 48, p. 73, gives an idea of what kind of solution
we can expect. In some cases x = 0 must be excluded (when we have a power with a negative exponent),

and in other cases the solutions are restricted to positive values for the independent variable x; this

happens when a logarithm or a root appears (see Example 1, p. 71). Note further that the auxiliary equation

for determining exponents m in y = x™ is

mm—1)+am+b=0, thusm?>+(a—1)m+b=0,
with a — 1 as the coefficient of the linear term. Here the ODE is written
(D x*y" +axy' + by =0,

which is no longer in the standard form with y” as the first term.

Whereas constant-coefficient ODEs are basic in mechanics and electricity, Euler—Cauchy equations are

less important. A typical application is shown on p. 73.

In summary, we can say that the key approach to solving the Euler—Cauchy equation is the auxiliary

equation m(m — 1) + am + b = 0. From this most of the material develops.
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3. General solution. Double root (Case II). Problems 2-11 are solved, as explained in the text, by
determining the roots of the auxiliary equation (3). The ODE 5x2y” 4 23xy’ 4+ 16.2y = 0 has the

auxiliary equation
Sm(m — 1) +23m +16.2 = 5m®> + 18m + 16.2 = 5[(m + 1.8)(m + 1.8)] = 0.
According to (6), p. 72, a general solution for positive x is
y=(c1+ 2 lnx)x_l'g.
5. Complex roots. The ODE 4x%y” + 5y = 0 has the auxiliary equation

dm(m — 1) +5 = 4m> —4m+5=4(m — (5 +i))(m — (3 —i)) = 0.

A basis of complex solutions is x{!/2*% x(1/2=i From it we obtain real solutions by a trick that

introduces exponential functions, namely, by first writing (Euler’s formulal!)
LDHE = 1254 — (12 pFinx xl/z(cos(lnx) =+ i sin(In x))
and then taking linear combinations to obtain a real basis of solutions

/x cos(In x) and /x sin(In x)

for positive x or writing In |x| if we want to admit all x £ 0.

7. Real roots. The ODE is in D-notation, with D the differential operator from Sec. 2.3. In regular

notation we have

(x*D? — 4xD + 61)y = x’D?y — 4xDy — 61y = x>y — 4xy' + 6y = 0.

Using the method of Example 1 of the text and determing the roots of the auxiliary equation (3)

we obtain
mm—1)—4m+6=m>—5m~+6=(m—2)m—3)=0

and from this the general solution y = ¢ 122 + ¢2x3 valid for all x follows.
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For Ap = —2i , we obtain an eigenvector as follows:
V2i 1 0 |[x

0
-1 J2i 1 x|=10
0 -1 V2i | [x3 0

This gives the following system of linear equations:

\/Eixl + x =0 sothat x = —ﬁixl.
—Xx1 + \/Exz + x3 =0,
—x2 + V2ix3 = 0.

Substituting x3 = +/2ix (obtained from the first equation) into the second equation gives us

—x1 + V2% +x3 = —x1 + («/Ei)(—\/ii)xl + x3
=—x1+2x; +x3=x; +x3=0 hence x; = —x3.

[Note that, to simplify the coefficient of the x-term, we used that (\/Ei)(—ﬁi) = —(«/5)(«/5) .
W—=—DW-1)=—-2)(—1) = =2, where i = </— 1.] Setting x; = 1 gives x3 = —1,
and xp = —+/2i. Thus the eigenvector for Ay = —+/2i is

[x1 X2 sll=01 —v2i —11".

For A3 = +/2i, we obtain the following system of linear equations:

—\2ix; + X2 =0 sothat x» = +/2ix;.
—X] — \/zixz + x3 =0,
—X) — «/Ei)@ =0 sothat xp = —+/2ix].

Substituting x» = +/2ix; (obtained from the first equation) into the second equation
X] = —~2x +x3=— 2i\/§iX1 + x3 = 2x1 + x3, hence x; = —x3.

(Another way to see this is to note that, xp = «/Eixl and xp = —«/iix3, so that \/Eixl = —«/Eix3 and
hence x; = —x3.) Setting x; = 1 gives x3 = —1, and xp = V/2i. Thus the eigenvector for A3 = V2i
is[1 V2i —117, as was to be expected from before. For more complicated calculations, you
might want to use Gaussian elimination (to be discussed in Sec. 7.3).

Together, we obtain the general solution

1 1 1
y=ci| 0] +c5| —vai|e VP 45 | vai| eV
1 -1 -1
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Sec. 6.6 Differentiation and Integration of Transforms. ODEs with Variable Coefficients

Do not confuse differentiation of transforms (Sec. 6.6) with differentiation of functions f (t) (Sec. 6.2). The
latter is basic to the whole transform method of solving ODEs. The present discussion on differentiation of
transforms adds just another method of obtaining transforms and inverses. It completes some of the theory
for Sec. 6.1 as shown on p. 238.

Also, solving ODEs with variable coefficients by the present method is restricted to a few such ODEs,
of which the most important one is perhaps Laguerre’s ODE (p. 240). This is because its solutions, the
Laguerre polynomials, are orthogonal [by Team Project 14(b) on p. 504]. Our hard work has paid off and
we have built such a large repertoire of techniques for dealing with Laplace transforms that we may have
several ways of solving a problem. This is illustrated in the four solution methods in Prob. 3. The choice
depends on what we notice about how the problem is put together, and there may be a preferred method as
indicated in Prob. 15.
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3. Differentiation, shifting. We are given that /' (r) = %te‘” and asked to find E(%te‘” ). For better
understanding we show that there are four ways to solve this problem.

Method 1. Use first shifting (Sec. 6.1). From Table 6.1, Sec. 6.1, we know that

b S I

%t has the transform

Now we apply the first shifting theorem (Theorem 2, p. 208) to conclude that

1

1 =
(—t (e has the transform S A—
2 (s — (=3))?
Method 2. Use differentiation, the preferred method of this section (Sec. 6.6). We have
1
LU@) = L) = ——
(f(@) = Le™) 13

so that by (1), in the present section, we have

_ l—3t __l 1 /__ _l 1 _l 1 _ %
L(Uc)%(zte )_ (2s+3)_ (2(s+3)2)_2<s+3>2‘<s—(—3>>2‘

Method 3. Use of subsidiary equation (Sec. 6.2). As a third method, we write g = %te*3’. Then
g(0) = 0 and by calculus

A) g = %e_3t — 3(%te_3t) = %6_3[ — 3g.
The subsidiary equation with G = £(g) is

1

, G=—2 5
s+3 (s+3)

=

1
G=—2_—3G, 3)G =
g s+3 (s+3)

Method 4. Transform problem into second-order initial value problem (Sec. 6.2) and solve it. As a
fourth method, an unnecessary detour, differentiate (A) to get a second-order ODE:

g =—3¢" =3

/

with initial conditions g0)=0, g'(0)= 3

and solve the IVP by the Laplace transform, obtaining the same transform as before.
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r = (ﬁ)’ = [8, 6, 0]. From these data the formula (9), p. 372, provides the solution of the equation and
formula (2**), p. 370, expands the cross product. Hence the desired velocity (vector) is

i J k
20 0 0 0 0 20
v=wxr=|0 20 = i— i+ k,
6 0 8 0 8 6
8 6 0
which we solve by Theorem 2 (b) on p. 297 in Sec. 7.7 and (1), p. 291 in Sec. 7.6. From Theorem 2
we immediately know that the first two determinants in front of i and j are 0. The last determinant
gives us
0 20
=0-6-20-8=-160.
8
Thus the desired velocity is v = [0, 0, —160]. The speed is the length of the velocity vector v, that is,
Iv| = /(—160)% = 160.
11. Vector product (Cross Product). Anticommutativity. From the given vectors a = [2, 1, 0]

and b = [—3, 2, 0] we calculate the vector product or cross product by (2**), p. 370, denote it by
vector v, and get

i J k
1 0 2 0 2 1
v=bxc=| 2 1 0l = i— i+ k
2 0 — 0 — 2
-3 2 0

=(1-0-0-2i—(2-0—0-(=3)j+2-2—1-(=3)k
—0i+0j+7k=[0, 0, 7]

Similarly, if we denote the second desired vector product by w, then

2

it
2

k
W:CXb: —3 2 0:
0

=(2-0-0-2)i—((=3)-0—0-2)j+((=3)-2—2-Dk
—0i+0j—7k=[0, 0, —7I.

Finally, the inner product or dot product in components as given by (2) on p. 361 gives us
[2,1,0].[-3,2,0] =2-(-3)4+1-24+0-0=—-64+24+0=—4.

Comments. We could have computed v by (2*) on p. 369 instead of (2**). The advantage of (2**) is
that it is easier to remember. In that same computation, we could have used Theorem 2(c) on p. 297
of Sec. 7.7 to immediately conclude the first second-order determinant, having a row of zeros, has a
value of zero. Similarly for the second-order determinant. For the second cross product, we could
have used (6) in Theorem 1(c) on p. 370 and gotten quickly that w =cxb=—-b xc= —v =

—[0, 0, 7] = [0, 0, —7]. Since ¢ x b = —b x ¢, the cross product is not commutative but
anticommutative. This is much better than with matrix multiplication which, in general, was neither
commutative nor anticommutative. We could have used these comments to simplify our calculations,
but we just wanted to show you that the straightforward approach works.
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first over x, the limits of integration must be expressed in terms of y. Thus y = x> becomes x = VY
(see (4) and Fig. 230, p. 428, for conceptual understanding):

1 5 1 Sy
/ / x3dxdy:/ / x> dx dy 14
0 Jy y=0 \Jx=y

:/1 LA P

o \4 4 4 S—x=ly
1 12 14

= - dy — d 0 — ¥
2 /Oy y /Oy y 0 1

Fig. 10.3(b). Integrating first in

341 51
_ 1 ( y- i| _ |:y_ i| ) x-direction and then in y-direction
4 3 1o 5 1o
1/1 1
T4 (§ - 5)
1/5 3
T4 <E - E)
1 2 2
4715 60
= i = 0.03333
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5. Electrostatic potential in a disk. Use of formula (20), p. 591. We are given that the boundary
values are

u(l,0) =f(0) =220 if —im <6 <im and 0  otherwise.

We sketch as shown below. We note that the period p of f(0) is 27, which is reasonable as we are
dealing with a disk r < R = 1. Hence the period p = 2L = 27 so that L = 7. Furthermore, f(0) is
an even function. Hence we use (6*), p. 486, to compute the coefficients of the Fourier series as
required by (20), p. 591. Since f(0) is even, the coefficients b, in (20) are 0, that is, f(6) is not
represented by any sine terms but only cosine terms.

We compute

1 L
ap = Z/o fx)dx

1 [7/? b4
- —/ £(0)do [sincef(e) —0,0> —]
T Jo 2
1 /2
- / 22046
7 Jo
220, 122
=—1[0l
20
.2 _ 1.
T 2

2 L
a,,:zfo f(x)cos%dx

2 (72 nm6

= - f(@)cos — db
L Jy L
2 /2

= —/ f(0)cosnb do
T Jo

2 /2 2 /2
=—/ 220~cosn9d9=—-220/ cos nb do
T Jo T 0

= —Smm —.

440 [sinn@ ] 440 . nm
B 0 nmw 2

T n

For even n thisis 0. Forn = 1,5,9, - - - this equals 440/(nr), and forn = 3,7, 11, - - - it equals
—440/(nmr). Writing the Fourier series out gives the answer shown on p. A33.

u(1,0)

0 Ty

Sec. 12.10 Prob. 5. Boundary potential

11. Semidisk. The idea sketched in the answer on p. A34 is conceived by symmetry. Proceeding in that
way will guarantee that, on the horizontal axis, we have potential 0. This can be confirmed by noting
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