INTRODUCTION

TO
LINEAR
ALGEBRA
Fourth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang Massachusetts Institute of Technology

 math.mit.edu/linearalgebra web.mit.edu/18.06 video lectures: ocw.mit.edumath.mit.edu/~gs www.wellesleycambridge.com email: gs@ math.mit.edu

Wellesley - Cambridge Press

Box 812060
Wellesley, Massachusetts 02482

Problem Set 1.1, page 8

1 The combinations give (a) a line in \mathbf{R}^{3}
(b) a plane in \mathbf{R}^{3}
(c) all of \mathbf{R}^{3}.
$2 \boldsymbol{v}+\boldsymbol{w}=(2,3)$ and $\boldsymbol{v}-\boldsymbol{w}=(6,-1)$ will be the diagonals of the parallelogram with \boldsymbol{v} and \boldsymbol{w} as two sides going out from $(0,0)$.
3 This problem gives the diagonals $\boldsymbol{v}+\boldsymbol{w}$ and $\boldsymbol{v}-\boldsymbol{w}$ of the parallelogram and asks for the sides: The opposite of Problem 2. In this example $\boldsymbol{v}=(3,3)$ and $\boldsymbol{w}=(2,-2)$.
$43 \boldsymbol{v}+\boldsymbol{w}=(7,5)$ and $c \boldsymbol{v}+d \boldsymbol{w}=(2 c+d, c+2 d)$.
$\mathbf{5} \boldsymbol{u}+\boldsymbol{v}=(-2,3,1)$ and $\boldsymbol{u}+\boldsymbol{v}+\boldsymbol{w}=(0,0,0)$ and $2 \boldsymbol{u}+2 \boldsymbol{v}+\boldsymbol{w}=($ add first answers $)=$ $(-2,3,1)$. The vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ are in the same plane because a combination gives $(0,0,0)$. Stated another way: $\boldsymbol{u}=-\boldsymbol{v}-\boldsymbol{w}$ is in the plane of \boldsymbol{v} and \boldsymbol{w}.
6 The components of every $c \boldsymbol{v}+d \boldsymbol{w}$ add to zero. $c=3$ and $d=9$ give $(3,3,-6)$.
7 The nine combinations $c(2,1)+d(0,1)$ with $c=0,1,2$ and $d=(0,1,2)$ will lie on a lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.
8 The other diagonal is $\boldsymbol{v}-\boldsymbol{w}$ (or else $\boldsymbol{w}-\boldsymbol{v}$). Adding diagonals gives $2 \boldsymbol{v}$ (or $2 \boldsymbol{w}$).
9 The fourth corner can be $(4,4)$ or $(4,0)$ or $(-2,2)$. Three possible parallelograms!
$10 \boldsymbol{i}-\boldsymbol{j}=(1,1,0)$ is in the base ($x-y$ plane). $\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}=(1,1,1)$ is the opposite corner from $(0,0,0)$. Points in the cube have $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.
11 Four more corners $(1,1,0),(1,0,1),(0,1,1),(1,1,1)$. The center point is $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. Centers of faces are $\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, \frac{1}{2}, 1\right)$ and $\left(0, \frac{1}{2}, \frac{1}{2}\right),\left(1, \frac{1}{2}, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 0, \frac{1}{2}\right),\left(\frac{1}{2}, 1, \frac{1}{2}\right)$.
12 A four-dimensional cube has $2^{4}=16$ corners and $2 \cdot 4=8$ three-dimensional faces and 24 two-dimensional faces and 32 edges in Worked Example 2.4 A.
13 Sum $=$ zero vector. Sum $=-2: 00$ vector $=8: 00$ vector. 2:00 is 30° from horizontal $=\left(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right)=(\sqrt{3} / 2,1 / 2)$.
14 Moving the origin to 6:00 adds $\boldsymbol{j}=(0,1)$ to every vector. So the sum of twelve vectors changes from $\mathbf{0}$ to $12 \boldsymbol{j}=(0,12)$.
15 The point $\frac{3}{4} \boldsymbol{v}+\frac{1}{4} \boldsymbol{w}$ is three-fourths of the way to \boldsymbol{v} starting from \boldsymbol{w}. The vector $\frac{1}{4} \boldsymbol{v}+\frac{1}{4} \boldsymbol{w}$ is halfway to $\boldsymbol{u}=\frac{1}{2} \boldsymbol{v}+\frac{1}{2} \boldsymbol{w}$. The vector $\boldsymbol{v}+\boldsymbol{w}$ is $2 \boldsymbol{u}$ (the far corner of the parallelogram).
16 All combinations with $c+d=1$ are on the line that passes through v and \boldsymbol{w}. The point $\boldsymbol{V}=-\boldsymbol{v}+2 \boldsymbol{w}$ is on that line but it is beyond \boldsymbol{w}.
17 All vectors $c \boldsymbol{v}+c \boldsymbol{w}$ are on the line passing through (0,0) and $\boldsymbol{u}=\frac{1}{2} \boldsymbol{v}+\frac{1}{2} \boldsymbol{w}$. That line continues out beyond $\boldsymbol{v}+\boldsymbol{w}$ and back beyond $(0,0)$. With $c \geq 0$, half of this line is removed, leaving a ray that starts at $(0,0)$.
18 The combinations $c \boldsymbol{v}+d \boldsymbol{w}$ with $0 \leq c \leq 1$ and $0 \leq d \leq 1$ fill the parallelogram with sides \boldsymbol{v} and \boldsymbol{w}. For example, if $\boldsymbol{v}=(1,0)$ and $\boldsymbol{w}=(0,1)$ then $c \boldsymbol{v}+d \boldsymbol{w}$ fills the unit square.
19 With $c \geq 0$ and $d \geq 0$ we get the infinite "cone" or "wedge" between \boldsymbol{v} and \boldsymbol{w}. For example, if $\boldsymbol{v}=(1,0)$ and $\boldsymbol{w}=(0,1)$, then the cone is the whole quadrant $x \geq 0$, $y \geq 0$. Question: What if $\boldsymbol{w}=-\boldsymbol{v}$? The cone opens to a half-space.

23 You can see why $\boldsymbol{q}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \boldsymbol{q}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \boldsymbol{q}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] . A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5\end{array}\right]=$ $Q R$.
24 (a) One basis for the subspace \boldsymbol{S} of solutions to $x_{1}+x_{2}+x_{3}-x_{4}=0$ is $\boldsymbol{v}_{1}=$ $(1,-1,0,0), \boldsymbol{v}_{2}=(1,0,-1,0), \boldsymbol{v}_{3}=(1,0,0,1) \quad$ (b) Since \boldsymbol{S} contains solutions to $(1,1,1,-1)^{\mathrm{T}} \boldsymbol{x}=0$, a basis for \boldsymbol{S}^{\perp} is $(1,1,1,-1) \quad$ (c) Split $(1,1,1,1)=\boldsymbol{b}_{1}+\boldsymbol{b}_{2}$ by projection on S^{\perp} and $S: \boldsymbol{b}_{2}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$ and $\boldsymbol{b}_{1}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right)$.
25 This question shows 2 by 2 formulas for $Q R$; breakdown $R_{22}=0$ when A is singular. $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}2 & -1 \\ 1 & 2\end{array}\right] \cdot \frac{1}{\sqrt{5}}\left[\begin{array}{ll}5 & 3 \\ 0 & 1\end{array}\right] . \operatorname{Singular}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$. $\frac{1}{\sqrt{2}}\left[\begin{array}{ll}2 & 2 \\ 0 & \mathbf{0}\end{array}\right]$. The Gram-Schmidt process breaks down when $a d-b c=0$.
$26\left(\boldsymbol{q}_{2}^{\mathrm{T}} \boldsymbol{C}^{*}\right) \boldsymbol{q}_{2}=\frac{\boldsymbol{B}^{\mathrm{T}} \boldsymbol{c}}{\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}} \boldsymbol{B}$ because $\boldsymbol{q}_{2}=\frac{\boldsymbol{B}}{\|\boldsymbol{B}\|}$ and the extra \boldsymbol{q}_{1} in \boldsymbol{C}^{*} is orthogonal to \boldsymbol{q}_{2}.
27 When a and b are not orthogonal, the projections onto these lines do not add to the projection onto the plane of \boldsymbol{a} and \boldsymbol{b}. We must use the orthogonal A and B (or orthonormal \boldsymbol{q}_{1} and \boldsymbol{q}_{2}) to be allowed to add 1D projections.
28 There are $m n$ multiplications in (11) and $\frac{1}{2} m^{2} n$ multiplications in each part of (12).
$29 \boldsymbol{q}_{1}=\frac{1}{3}(2,2,-1), \boldsymbol{q}_{2}=\frac{1}{3}(2,-1,2), \boldsymbol{q}_{3}=\frac{1}{3}(1,-2,-2)$.
30 The columns of the wavelet matrix W are orthonormal. Then $W^{-1}=W^{\mathrm{T}}$. See Section 7.2 for more about wavelets : a useful orthonormal basis with many zeros.
31 (a) $c=\frac{1}{2}$ normalizes all the orthogonal columns to have unit length (b) The projection $\left(\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}\right) \boldsymbol{a}$ of $\boldsymbol{b}=(1,1,1,1)$ onto the first column is $\boldsymbol{p}_{1}=\frac{1}{2}(-1,1,1,1)$. (Check $\boldsymbol{e}=\mathbf{0}$.) To project onto the plane, add $\boldsymbol{p}_{2}=\frac{1}{2}(1,-1,1,1)$ to get $(0,0,1,1)$.
$32 Q_{1}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$ reflects across x axis, $Q_{2}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right]$ across plane $y+z=0$.
33 Orthogonal and lower triangular $\Rightarrow \pm 1$ on the main diagonal and zeros elsewhere.
34 (a) $Q \boldsymbol{u}=\left(I-2 \boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}\right) \boldsymbol{u}=\boldsymbol{u}-2 \boldsymbol{u} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}$. This is $-\boldsymbol{u}$, provided that $\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}$ equals 1 (b) $Q \boldsymbol{v}=\left(I-2 \boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}\right) \boldsymbol{v}=\boldsymbol{u}-2 \boldsymbol{u} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{v}=\boldsymbol{u}$, provided that $\boldsymbol{u}^{\mathrm{T}} \boldsymbol{v}=0$.

35 Starting from $\boldsymbol{A}=(1,-1,0,0)$, the orthogonal (not orthonormal) vectors $\boldsymbol{B}=$ $(1,1,-2,0)$ and $\boldsymbol{C}=(1,1,1,-3)$ and $\boldsymbol{D}=(1,1,1,1)$ are in the directions of $\boldsymbol{q}_{2}, \boldsymbol{q}_{3}, \boldsymbol{q}_{4}$. The 4 by 4 and 5 by 5 matrices with integer orthogonal columns (not orthogonal rows, since not orthonormal Q !) \quad are $\left[\begin{array}{llll}\boldsymbol{A} & \boldsymbol{B} & \boldsymbol{C} & \boldsymbol{D}\end{array}\right]=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 \\ 0 & 0 & -3 & 1\end{array}\right]$ and $\left[\begin{array}{rrrrr}1 & 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 & 1 \\ 0 & 0 & -3 & 1 & 1 \\ 0 & 0 & 0 & -4 & 1\end{array}\right]$
$7 U U^{-1}=I$: Back substitution needs $\frac{1}{2} j^{2}$ multiplications on column j, using the j by j upper left block. Then $\frac{1}{2}\left(1^{2}+2^{2}+\cdots+n^{2}\right) \approx \frac{1}{2}\left(\frac{1}{3} n^{3}\right)=$ total to find U^{-1}.
$8\left[\begin{array}{ll}1 & 0 \\ 2 & 2\end{array}\right] \rightarrow\left[\begin{array}{ll}2 & 2 \\ 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{rr}2 & 2 \\ 0 & -1\end{array}\right]=U$ with $P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $L=\left[\begin{array}{ll}1 & 0 \\ .5 & 1\end{array}\right]$; $A \rightarrow\left[\begin{array}{lll}2 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrr}2 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 2 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrr}2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll}2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]=U$ with $P=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ and $L=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ .5 & -.5 & 1\end{array}\right]$.
$9 A=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$ has cofactors $C_{13}=C_{31}=C_{24}=C_{42}=1$ and $C_{14}=C_{41}=$ $-1 . A^{-1}$ is a full matrix!

10 With 16-digit floating point arithmetic the errors $\left\|\boldsymbol{x}-\boldsymbol{x}_{\text {computed }}\right\|$ for $\varepsilon=10^{-3}, 10^{-6}$, $10^{-9}, 10^{-12}, 10^{-15}$ are of order $10^{-16}, 10^{-11}, 10^{-7}, 10^{-4}, 10^{-3}$.
11 (a) $\cos \theta=1 / \sqrt{10}, \sin \theta=-3 / \sqrt{10}, R=\frac{1}{\sqrt{10}}\left[\begin{array}{rr}1 & 3 \\ -3 & 1\end{array}\right]\left[\begin{array}{rr}1 & -1 \\ 3 & 5\end{array}\right]=\frac{1}{\sqrt{10}}\left[\begin{array}{rr}10 & 14 \\ 0 & 8\end{array}\right]$. (b) A has eigenvalues 4 and 2. Put one of the unit eigenvectors in row 1 of Q : either $Q=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$ and $Q A Q^{-1}=\left[\begin{array}{rr}2 & -4 \\ 0 & 4\end{array}\right]$ or $Q=\frac{1}{\sqrt{10}}\left[\begin{array}{rr}1 & -3 \\ 3 & 1\end{array}\right]$ and $Q A Q^{-1}=$ $\left[\begin{array}{rr}4 & -4 \\ 0 & 2\end{array}\right]$.

12 When A is multiplied by a plane rotation $Q_{i j}$, this changes the $2 n$ (not n^{2}) entries in rows i and j. Then multiplying on the right by $\left(Q_{i j}\right)^{-1}=\left(Q_{i j}\right)^{\mathrm{T}}$ changes the $2 n$ entries in columns i and j.
$13 Q_{i j} A$ uses $4 n$ multiplications (2 for each entry in rows i and j). By factoring out $\cos \theta$, the entries 1 and $\pm \tan \theta$ need only $2 n$ multiplications, which leads to $\frac{2}{3} n^{3}$ for $Q R$.
14 The $(2,1)$ entry of $Q_{21} A$ is $\frac{1}{3}(-\sin \theta+2 \cos \theta)$. This is zero if $\sin \theta=2 \cos \theta$ or $\tan \theta=2$. Then the $2,1, \sqrt{5}$ right triangle has $\sin \theta=2 / \sqrt{5}$ and $\cos \theta=1 / \sqrt{5}$.

Every 3 by 3 rotation with det $Q=+1$ is the product of 3 plane rotations.
15 This problem shows how elimination is more expensive (the nonzero multipliers are counted by $\mathbf{n n z}(L)$ and $\mathbf{n n z}(L L)$) when we spoil the tridiagonal K by a random permutation.

If on the other hand we start with a poorly ordered matrix K, an improved ordering is found by the code symamd discussed in this section.

16 The "red-black ordering" puts rows and columns 1 to 10 in the odd-even order 1, 3, 5, 7, $9,2,4,6,8,10$. When K is the $-1,2,-1$ tridiagonal matrix, odd points are connected

