Student Solutions Manual

 Phillip E. Bedient • Richard E. Bedient
Eighth Edition Dlementary Equations

Earl D. Rainville Phillip E. Bedient Richard E. Bedient

Student Solutions Manual Phillip E. Bedient • Richard E. Bedient

Eighth Edition
 Elementary Differential Equations

Earl D. Rainville
Late Professor of Mathematics
University of Michigan

Phillip E. Bedient

Professor Emeritus of Mathematics
Franklin and Marshall College

Richard E. Bedient

Professor of Mathematics
Hamilton College

Assistant Editor: Audra Walsh
 Production Editor: Carole Suraci
 Special Projects Manager: Barbara A. Murray
 Supplement Cover Manager: Paul Gourhan
 Manufacturing Buyer: Alan Fischer

Copyright © 1997 by Prentice-Hall, Inc.
A Pearson Education Company
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without permission in writing from the publisher.

Printed in the United States of America

ISEN 0-1ヨ-59278ヨ-8

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc, Tokyo
Pearson Education Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Contents

1 Definitions; Families of Curves 1
1.2 Definitions 1
1.3 Families of Solutions 1
2 Equations of Order One 2
2.1 Separation of Variables 2
2.2 Homogeneous Functions 5
2.3 Equations with Homogeneous Coefficients 5
2.4 Exact Equations 9
2.6 The General Solution of a Linear Equation 11
Miscellaneous Exercises 15
3 Numerical Methods 21
3.2 Euler's Method 21
3.3 A Modification of Euler's Method 22
3.4 A Method of Successive Approximation 22
3.5 An Improvement 22
3.6 The Use of Taylor's Theorem 23
3.7 The Runge-Kutta Method 24
3.8 A Continuing Method 24
4 Elementary Applications 25
4.3 Simple Chemical Conversion 25
4.4 Logistic Growth and the Price of Commodities 26
5 Additional Topics on Equations of Order One 28
5.1 Integrating Factors Found by Inspection 28
5.2 The Determination of Integrating Factors 30
5.4 Bernoulli's Equation 32
5.5 Coefficients Linear in the Two Variables 34
5.6 Solutions Involving Nonelementary Integrals 35

Full file at

 https://buklibry.com/download/solutions-manual-elementary-differential-equations-8th-edition-by-rainville-bedient/
CONTENTS

6 Linear Differential Equations 39
6.2 An Existence and Uniqueness Theorem 39
6.4 The Wronskian 39
6.8 The Fundamental Laws of Operation 40
6.9 Some Properties of Differential Operators 41
7 Linear Equations with Constant Coefficients 42
7.2 The Auxiliary Equation: Distinct Roots 42
7.3 The Auxiliary Equation: Repeated Roots 43
7.6 A Note on Hyperbolic Functions 44
Miscellaneous Exercises 45
8 Nonhomogeneous Equations: Undetermined Coefficients 48
8.1 Construction of a Homogeneous Equation from a Specific Solution 48
8.3 The Method of Undetermined Coefficieents 49
8.4 Solution by Inspection 54
9 Variation of Parameters 56
9.2 Reduction of Order 56
9.4 Solution of $y^{\prime \prime}+y=f(x)$ 58
10 Applications 70
10.3 Resonance 70
10.4 Damped Vibrations 73
10.5 The Simple Pendulum 77
11 Linear Systems of Equations 78
11.2 First-Order Systems with Constant Coefficients 78
11.4 Some Matrix Algebra 78
11.5 First-Order Systems Revisited 79
11.6 Complex Eigenvalues 81
11.7 Repeated Eigenvalues 83
11.8 The Phase Plane 85
12 Nonhomogeneous Systems of Equations 87
12.1 Nonhomogeneous Systems 87
12.2 Arms Races 88
12.4 Simple Networks 90
13 The Existence and Uniqueness of Solutions 94
13.2 An Existence and Uniqueness Theorem 94

Full file at

 https://buklibry.com/download/solutions-manual-elementary-differential-equations-8th-edition-by-rainville-bedient/
CONTENTS

14 The Laplace Transform 95
14.3 Transforms of Elementary Functions 95
14.6 Functions of Class A 96
14.10 Periodic Functions 98
15 Inverse Transforms 101
15.1 Definition of an Inverse Transform 101
15.2 Partial Fractions 102
15.3 Initial Value Problems 102
15.4 A Step Function 108
15.5 A Convolution Theorem 110
15.6 Special Integral Equations 111
15.8 The Deflection of Beams 114
15.9 Systems of Equations 115
16 Nonlinear Equations 120
16.2 Factoring the Left Member 120
16.5 The p-Discriminant Equation 123
16.7 Clairaut's Equation 124
16.9 Independent Variable Missing 126
Miscellaneous Exercises 131
17 Power Series Solutions 134
17.5 Solutions Near an Ordinary Point 134
18 Solutions Near Regular Singular Points 143
18.1 Regular Singular Points 143
18.4 Difference of Roots Nonintegral 143
18.6 Equal Roots 152
18.7 Equal Roots, an Alternative 158
18.8 Nonlogarithmic Case 160
18.9 Logarithmic Case 165
18.10 Solution for Large x 174
18.11 Many-Term Recurrence Relations 181
Miscellaneous Exercises 185
20 Partial Differential Equations 205
20.3 Method of Separation of Variables 205
21 Orthogonal Sets of Functions 208
21.6 Other Orthogonal Sets 208
22 Fourier Series 210
22.3 Numerical Examples of Fourier Series 210
22.4 Fourier Sine Series 213
22.5 Fourier Cosine Series 215
23 Boundary Value Problems 217
23.1 The One-Dimensional Heat Equation 217
23.4 Heat Conduction in a Sphere 220
23.5 The Simple Wave Equation 221
23.6 Laplace's Equation in Two Dimensions 223
24 Additional Properties of the Laplace Transform 228
24.1 Power Series and Inverse Transforms 228
24.2 The Error Function 230
24.3 Bessel Functions 231
25 Partial Differential Equations:
Transform Methods 232
25.1 Boundary Value Problems 232
25.2 The Wave Equation 233
25.5 Diffusion in a Slab of Finite Width 233
25.6 Diffusion in a Quarter-Infinite Solid 234

Chapter 1

Definitions; Families of Curves

1.2 Definitions

All answers in this section are determined by inspection.

1. The equation is ordinary, linear in x, and of order 2 .
2. The equation is ordinary, nonlinear, and of order 1.
3. The equation is ordinary, linear in y, and of order 3.
4. The equation is partial, linear in u, and of order 2.
5. The equation is ordinary, linear in x or y, and of order 2 .
6. The equation is ordinary, linear in y, and of order 1 .
7. The equation is ordinary, nonlinear, and of order 3.
8. The equation is ordinary, linear in y, and of order 2.

1.3 Families of Solutions

1. Rewriting the equation yields $y=\int x^{3}+2 x d x+c$. Integrating, we have $y=\frac{1}{4} x^{4}+x^{2}+c$.
2. Rewriting the equation yields $y=4 \int \cos 6 x d x+c$. Integrating, we have $y=\frac{2}{3} \sin 6 x+c$.
3. Rewriting the equation yields $y=2 \int \frac{1}{x^{2}+2^{2}} d x+c$. Integrating, we have $y=\arctan (x / 2)+c$.
4. Rewriting the equation yields $y=3 \int e^{x} d x$. Integrating, we have $y=3 e^{x}+c$. Substituting the initial conditions gives $6=3+c$ or $c=3$ so $y=3 e^{x}+3$.
5. As in Example 1.2, $y=c e^{4 x}$. Substituting the initial conditions gives $3=c e^{0}=c$ so $y=3 e^{4 x}$.
6. Rewriting the equation yields $y=4 \int \sin 2 x d x$. Integrating, we have $-2 \cos 2 x+c$. Substituting the initial conditions gives $2=-2 \cos \pi+c=2+c$ or $c=0$ so $y=-2 \cos 2 x$.
7. The auxiliary equation is $m^{2}-2 m-3=0$ and its roots are $m=3,-1$. The general solution is $y=c_{1} e^{3 x}+c_{2} e^{-x}$ and $y^{\prime}=3 c_{1} e^{3 x}-c_{2} e^{-x}$. But $y(0)=c_{1}+c_{2}=4$ and $y^{\prime}(0)=3 c_{1}-c_{2}=0$, so that $c_{1}=1, c_{2}=3$. The particular solution is $y=e^{3 x}+3 e^{-x}$. Thus $y(1)=e^{3}+e^{-1}$.
8. The auxiliary equation is $m^{2}-m-6=0$ and its roots are $m=3,-2$. The general solution is $y=c_{1} e^{3 x}+c_{2} e^{-2 x}$ and $y^{t}=3 c_{1} e^{3 x}-2 c_{2} e^{-2 x}$. But $y(0)=c_{1}+c_{2}=3$ and $y^{\prime}(0)=3 c_{1}-2 c_{2}=-1$, so that $c_{1}=1, c_{2}=2$. The particular solution is $y=e^{3 x}+2 e^{-2 x}$. Thus $y(1)=e^{3}+2 e^{-2}$.
9. The auxiliary equation is $m^{3}-2 m^{2}-5 m+6=0$ and its roots are $m=1,3,-2$. The general solution is $y=c_{1} e^{x}+c_{2} e^{3 x}+c_{3} e^{-2 x}$, so that $y^{\prime}=c_{1} e^{x}+3 c_{2} e^{3 x}-2 c_{3} e^{-2 x}$, and $y^{\prime \prime}=c_{1} e^{x}+9 c_{2} e^{3 x}+4 c_{3} e^{-2 x}$. But $y(0)=c_{1}+c_{2}+c_{3}=1, y^{\prime}(0)=c_{1}+3 c_{2}-2 c_{3}=-7$, and $y^{\prime \prime}(0)=c_{1}+9 c_{2}+4 c_{3}=-1$. Thus $c_{1}=0, c_{2}=-1, c_{3}=2$. The particular solution is $y=-e^{3 x}+2 e^{-2 x}$ and $y(1)=-e^{3}+2 e^{-2}$.

7.3 The Auxiliary Equation: Repeated Roots

1. The auxiliary equation is $m^{2}-6 m+9=0$ and its roots are $m=3,3$. The general solution is $y=\left(c_{1}+c_{2} x\right) e^{3 x}$.
2. The auxiliary equation is $4 m^{3}+4 m^{2}+m=0$ and its roots are $m=0,-\frac{1}{2},-\frac{1}{2}$. The general solution is $y=c_{1}+\left(c_{2}+c_{3} x\right) \exp \left(-\frac{1}{2} x\right)$.
3. The auxiliary equation is $m^{4}+6 m^{3}+9 m^{2}=0$ and its roots are $m=0,0,-3,-3$. The general solution is $y=c_{1}+c_{2} x+\left(c_{3}+c_{4} x\right) e^{-3 x}$.
4. The auxiliary equation is $4 m^{3}-3 m+1=0$ and its roots are $m=-1, \frac{1}{2}, \frac{1}{2}$. The general solution is $y=\left(c_{1}+c_{2} x\right) \exp \left(\frac{1}{2} x\right)+c_{3} e^{-x}$.
5. The auxiliary equation is $m^{3}+3 m^{2}+3 m+1=0$ and its roots are $m=-1,-1,-1$. The general solution is $y=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{-x}$.
6. The auxiliary equation is $m^{5}-m^{3}=0$ and its roots are $m=0,0,0,1,-1$. The general solution is $y=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} e^{x}+c_{5} e^{-x}$.
7. The auxiliary equation is $4 m^{4}+4 m^{3}-3 m^{2}-2 m+1=0$ and its roots are $m=-1,-1, \frac{1}{2}, \frac{1}{2}$. The general solution is $y=\left(c_{1}+c_{2} x\right) e^{-x}+\left(c_{3}+c_{4} x\right) \exp \left(\frac{1}{2} x\right)$.
8. The auxiliary equation is $m^{4}+3 m^{3}-6 m^{2}-28 m-24=0$ and its roots are $m=-2,-2,-2,3$. The general solution is $y=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{-2 x}+c_{4} e^{3 x}$.
9. The auxiliary equation is $4 m^{5}-23 m^{3}-33 m^{2}-17 m-3=0$ with roots $m=-1,-1,3,-\frac{1}{2},-\frac{1}{2}$. The general solution is $y=\left(c_{1}+c_{2} x\right) e^{-x}+c_{3} e^{3 x}+\left(c_{4}+c_{5} x\right) \exp \left(-\frac{1}{2} x\right)$.
10. The auxiliary equation is $m^{4}-5 m^{2}-6 m-2=0$ and its roots are $m=1 \pm \sqrt{3},-1,-1$. The general solution is $y=\left(c_{1}+c_{2} x\right) e^{-x}+c_{3} \exp [(1+\sqrt{3}) x]+c_{4} \exp [(1-\sqrt{3}) x]$.
11. The auxiliary equation is $m^{2}+4 m+4=0$ and its roots are $m=-2,-2$. The general solution is $y=\left(c_{1}+c_{2} x\right) e^{-2 x}$ and $y^{\prime}=\left(-2 c_{1}+c_{2}-2 c_{2} x\right) e^{-2 x}$. But $y(0)=c_{1}=1$ and $y^{\prime}(0)=-2 c_{1}+c_{2}=-1$, so that $c_{1}=c_{2}=1$. The particular solution is $y=(1+x) e^{-2 x}$.

The first of these equations can be written $\frac{d I_{2}}{d t}=-\frac{R_{1}}{L_{2}} I_{1}-\frac{R_{2}}{L_{2}} I_{2}+\frac{E}{L_{2}}$. Differentiating the second equation and using the third equation to eliminate I_{1} yields

$$
\begin{aligned}
& R_{1} \frac{d I_{1}}{d t}+R_{3} \frac{d I_{3}}{d t}+\frac{1}{C_{3}} I_{3}=0 \\
& R_{1} \frac{d I_{1}}{d t}+R_{3}\left(\frac{d I_{1}}{d t}-\frac{d I_{2}}{d t}\right)+\frac{1}{C_{3}}\left(I_{1}-I_{2}\right)=0
\end{aligned}
$$

Replacing $\frac{d I_{2}}{d t}$ by its equivalent gives us

$$
\begin{aligned}
& \left(R_{1}+R_{3}\right) \frac{d I_{1}}{d t}-\frac{R_{3}}{L_{2}}\left(-R_{1} I_{1}-R_{2} I_{2}+E\right)+\frac{1}{C_{3}}\left(I_{1}-I_{2}\right)=0, \\
& \left(R_{1}+R_{3}\right) \frac{d I_{1}}{d t}=\left(-\frac{R_{1} R_{3}}{L_{2}}-\frac{1}{C_{3}}\right) I_{1}+\left(-\frac{R_{2} R_{3}}{L_{2}}+\frac{1}{C_{3}}\right) I_{2}+\frac{R_{3} E}{L_{2}} .
\end{aligned}
$$

The system in I_{1} and I_{2} can now be written

$$
\binom{I_{1}}{I_{2}}^{\prime}=\left(\begin{array}{rr}
-\frac{\left.C_{3} R_{1} R_{3}+L_{2}\right)}{C_{3} L_{2}\left(R_{1}+R_{3}\right)} & -\frac{C_{3} R_{2} R_{3}-L_{2}}{C_{3} L_{2}\left(R_{1}+R_{3}\right)} \\
-\frac{R_{1}}{L_{2}} & -\frac{R_{2}}{L_{2}}
\end{array}\right)\binom{I_{1}}{I_{2}}+\binom{\frac{R_{3} E}{L_{2}\left(R_{1}+R_{3}\right)}}{\frac{E}{L_{2}}} .
$$

The nature of the solutions of this system depend upon the roots of the characteristic equation

$$
\left|\begin{array}{rr}
-\frac{C_{3} R_{1} R_{3}+L_{2}}{C_{3} L_{3}\left(R_{1}+R_{3}\right)}-m & -\frac{C_{3} R_{2} R_{3}-L_{2}}{\left.C_{3} L_{2} R_{1}+R_{3}\right)} \\
-\frac{R_{1}}{L_{2}} & -\frac{R_{2}}{L_{2}}-m
\end{array}\right|=0
$$

which may be written

$$
m^{2}+\left[\frac{C_{3} R_{1} R_{3}+L_{2}}{C_{3} L_{2}\left(R_{1}+R_{3}\right)}+\frac{R_{2}}{L_{2}}\right] m+\frac{R_{2}\left(C_{3} R_{1} R_{3}+L_{2}\right)}{C_{3} L_{2}^{2}\left(R_{1}+R_{3}\right)}-\frac{R_{1}\left(C_{3} R_{2} R_{3}-L_{2}\right)}{C_{3} L_{2}^{2}\left(R_{1}+R_{3}\right)}=0
$$

or

$$
C_{3} L_{2}\left(R_{1}+R_{3}\right) m^{2}+\left[C_{3}\left(R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}\right)+L_{2}\right] m+R_{1}+R_{2}=0
$$

Note that the answer given in the book has a typographic error. The last term should be R_{2}, not R_{3}.

The indicial equation is $(c+1)^{2}=0$ and $a_{n}=\frac{-a_{n-1}}{n+c+1}$ for $n \geq 1$. Solving this recurrence relation we get

$$
\begin{aligned}
a_{n} & =\frac{(-1)^{n} a_{0}}{(c+2) \cdots(c+n+1)} \\
y_{c} & =x^{c}+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n+c}}{(c+2) \cdots(c+n+1)} \\
\frac{\partial y_{c}}{\partial c} & =y_{c} \ln x+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n+c}}{(c+2) \cdots(c+n+1)}\left[-\frac{1}{c+2}-\cdots-\frac{1}{c+n+1}\right]
\end{aligned}
$$

Substituting $c=-1$ gives the solutions

$$
\begin{aligned}
& y_{1}=x^{-1}+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n-1}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n-1}}{n!} \\
& y_{2}=y_{1} \ln x+\sum_{n=1}^{\infty} \frac{(-1)^{n+1} H_{n} x^{n-1}}{n!}
\end{aligned}
$$

25. Set $L(y)=x(1-2 x) y^{\prime \prime}-2(2+x) y^{\prime}+18 y$. Then

$$
\begin{aligned}
L(y) & =\sum_{n=0}^{\infty}[(n+c)(n+c-1)-4(n+c)] a_{n} x^{n+c-1} \\
& -\sum_{n=0}^{\infty}[2(n+c)(n+c-1)+2(n+c)-18] a_{n} x^{n+c} \\
& =\sum_{n=0}^{\infty}(n+c)(n+c-5) a_{n} x^{n+c-1}-\sum_{n=0}^{\infty} 2(n+c-3)(n+c+3) a_{n} x^{n+c} \\
& =c(c-5) a_{0} x^{c-1}+\sum_{n=1}^{\infty}\left[(n+c)(n+c-5) a_{n}-2(n+c-4)(n+c+2) a_{n-1}\right] x^{n+c-1}
\end{aligned}
$$

Choosing $c=0$ and $n(n-5) a_{n}=2(n-4)(n+2) a_{n-1}$ for ≥ 1,

$$
\begin{array}{ll}
1 \cdot(-4) a_{1}=2 \cdot(-3) \cdot 3 a_{0}, & a_{1}=\frac{9}{2} a_{0} \\
2 \cdot(-3) a_{2}=2 \cdot(-2) \cdot 4 a_{1}, & a_{2}=12 a_{0} \\
3 \cdot(-2) a_{3}=2 \cdot(-1) \cdot 5 a_{2}, & a_{3}=20 a_{0} \\
4 \cdot(-1) a_{4}=2 \cdot(0) \cdot 6 a_{3}, & a_{4}=0 \\
5 \cdot(0) a_{5}=2 \cdot(1) \cdot 7 a_{4}, & a_{5} \text { arbitrary. }
\end{array}
$$

This linear differential equation has general solution $u(x, s)=c_{1}(s) e^{4 s x}+c_{2}(s) e^{-4 s x}-\frac{2}{s^{2}}$. In order for $\lim _{x \rightarrow \infty}$ to exist we must take $c_{1}(s)=0$. As $x \rightarrow 0$ we need to take $\frac{1}{s^{2}}=c_{2}(s)-\frac{2}{s^{2}}$. That is $c_{2}(s)=\frac{3}{s^{2}}$. We therefore have $u(x, s)=\frac{3}{s^{2}} e^{-4 s x}-\frac{2}{s^{2}}$. An inverse transform now yields the solution $y(x, t)=3(t-4 x) \alpha(t-4 x)-2 t$.

25.2 The Wave Equation

1. Direct application of the Laplace transform gives us the transformed system

$$
s^{2} u-s\left(x-x^{2}\right)=\frac{d^{2} u}{d x^{2}}, \quad x \rightarrow 0^{+}, u \rightarrow 0, x \rightarrow 1^{-}, u \rightarrow 0
$$

The linear equation has as its general solution $u=\frac{x}{s}-\frac{x^{2}}{s}-\frac{2}{s^{3}}+c_{1} e^{-s x}+c_{2} e^{s x}$. The condition $x \rightarrow 0^{+}, u \rightarrow 0$ implies that $c_{1}+c_{2}=2 / s^{3}$. The condition $x \rightarrow 1^{-}, u \rightarrow 0$ implies that $e^{-s} c_{1}+e^{s} c_{2}=2 / s^{3}$. From these two equations we obtain

$$
c_{1}=\frac{2}{s^{3}\left(1+e^{-s}\right)}=\frac{2}{s^{3}} \sum_{n=0}^{\infty}(-1)^{n} e^{-n s} \text { and } c_{2}=\frac{2 e^{-s}}{s^{3}\left(1+e^{-s}\right)}=\frac{2}{s^{3}} \sum_{n=0}^{\infty}(-1)^{n} e^{-(n+1) s}
$$

Therefore

$$
u(x, s)=\frac{x}{s}-\frac{x^{2}}{s}-\frac{2}{s^{3}}+\frac{2}{s^{3}} \sum_{n=0}^{\infty}(-1)^{n} e^{-(n+x) s}+\frac{2}{s^{3}} \sum_{n=0}^{\infty}(-1)^{n} e^{-(n+1-x) s}
$$

The inverse transform now yields

$$
y(x, t)=x-x^{2}-t^{2}+\sum_{n=0}^{\infty}(-1)^{n}\left[(t-n-x)^{2} \alpha(t-n-x)+(t-n-1+x)^{2} \alpha(t-n-1+x)\right] .
$$

25.5 Diffusion in a Slab of Finite Width

1. Direct application of the Laplace transform gives us the transformed system

$$
s w-1=\frac{d^{2} w}{d x^{2}}, \quad x \rightarrow 0^{+}, w \rightarrow 0, x \rightarrow 1^{-}, \frac{d w}{d x} \rightarrow 0 .
$$

The linear equation has as its general solution $w=\frac{1}{s}+c_{1} \sinh (x \sqrt{s})+c_{2} \cosh (x \sqrt{s})$. The condition $x \rightarrow 0^{+}, w \rightarrow 0$ implies that $c_{2}=-1 / s$. Thus

$$
\frac{d w}{d x}=\sqrt{s} c_{1} \cosh (x \sqrt{s})-\frac{1}{\sqrt{s}} \sinh (x \sqrt{s}) .
$$

