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Chapter 1

Definitions; Families of Curves

1.2 Definitions

All answers in this section are determined by inspection.
1. The equation is ordinary, linear in z, and of order 2.
3. The equation is ordinary, nonlinear, and of order 1.

The equation is ordinary, linear in y, and of order 3.

o

7. The equation is partial, linear in u, and of order 2.

9. The equation is ordinary, linear in x or y, and of order 2.
11. The equation is ordinary, linear in y, and of order 1.
13. The equation is ordinary, nonlinear, and of order 3.

15. The equation is ordinary, linear in y, and of order 2.

1.3 Families of Solutions

1. Rewriting the equation yields y = / 2?4+ 2 dz +c. Integrating, we have y = %3:4 + 2% 4 ¢
3. Rewriting the equation yields y =4 f cos 6z du + c. Integrating, we have y = %sin 6z + c

1
5. Rewriting the equation yields y = 2 / po o dz+c. Integrating, we have y = arctan (z/2)+ec.

7. Rewriting the equation yields y = 3 / e dz. Integrating, we have y = 3¢* + ¢. Substituting
the initial conditions gives 6§ = 3+ corc= 3 s0 y = 3~ + 3.
9. As in Example 1.2, y = ce*®. Substituting the initial conditions gives 3 = ce® = ¢ so y = 3%,

1. Rewriting the equation yields y = 4 | sin 22 d2. Integrating, we have -2 cos 2z + ¢. Substitut-

ing the initial conditions gives 2 = ~2cosmte=24core=0s0 y = —2cos 2.
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7.3. THE AUXILIARY EQUATION: REPEATED ROOTS 43

25. The auxiliary equation is m? — 2m — 3 = 0 and its roots are m = 3, —1. The general solution
is y = 163 4 cpe~% and ¥ = 3¢1€%" — e But y(0) =¢;+c; = 4 and ¥'(0) = 3¢; —¢p =0,
so that ¢; = 1, ¢z = 3. The particular solution is y = € + 3e™*, Thus y(1) = e® + e 1.

27. The auxiliary equation is m? —m — 6 = 0 and its roots are m = 3, —2. The general solution is
y = 163 +cpe” ¥ and y' = 3¢, ~2cpe7 2. But y{0) = e1+cp = 3and y'(0) = 3¢;-2¢p = —1,
so that ¢; = 1, ey = 2. The particular solution is y = €3* + 2e~2*. Thus y(1) = €3 + 2e~2.

20. The auxiliary equation is m3 — 2m? ~ 5m + 6 = 0 and its roots are m = 1, 3, —2. The
general solution is ¥ = cje® + c2e% + c3e™2%, so that 3 = c1e® + 3c2e3® — 2c3¢7%%, and
Y = cre® + 9cye®® 4 dege™®*. But y(0) = c1 +ea+e3 = 1, Y (0) = 1 + 3¢ — 2e3 = T,
and y”(0) = ¢; + 9¢p + 4eg = —1. Thus ¢; =0, ¢z = —1, ¢3 = 2. The particular solution is
y = —e% + 2~ and y(1) = —e3 + 2e™2.

7.3 The Auxiliary Equation: Repeated Roots

1. The auxiliary equation is m? — 6m -+ 9 = 0 and its roots are m = 3, 3. The general solution
is ¥ = (c1 + cox)e’®.

3. The auxiliary equation is 4m® + 4m? + m = 0 and its roots are m = 0, —4, —4. The general
Sﬁlution is Y= 4~ (02 + 033:) exp(»-«-%;z:),

5. The auxiliary equation is m* + 6m® 4 9m? = 0 and its roots are m = 0, 0, ~3, ~3. The
general solution is ¥ = ¢; + coT + (3 + caz)e™ 3.

7. The auxiliary equation is 4m3 — 3m + 1 = 0 and its roots are m = -1, %, -;— The general

solution is ¥ = (¢1 + cax) exp (%x) + ege™",
9. The auxiliary equation is m® + 3m? 4+ 3m + 1 = 0 and its roots are m = —1, —1, —1. The
general solution is y = (1 + c2z + cgz?)e™®.
11. The auxiliary equation is m® — m3 = 0 and its roots are m = 0, 0, 0, 1, —1. The general
solution is y = ¢; + cox + cax? + cqe® + cge™".

13. The auxiliary equation is 4r* + 4m® — 3m? — 2m +1 = 0 and its roots are m = ~1, -1, 1, 1.
The general solution is y = (e1 + cox)e™® + {3 + c4T) exp (é—x).

15. The auxiliary equation is m? 4 3m? —6m? —28m—24 = 0 and its roots are m = -2, —2, —2, 3.
The general solution is ¥ = (¢; + cax + c3x?)e™ 2% + 4%,

17. The auxiliary equation is 4m® ~23m3-33m?—1Tm—3 = O with roots m = —1, —1, 3, ~ %, w%,-.

The general solution is y = (¢1 + cax)e™ + c2e®® + (¢4 + c5T) exp {-%:1:).

19. The auxiliary equation is rn? — 5m? — 6m — 2 = 0 and its roots are m = 1+ /3, —1, —1. The
general solution is y = (¢, + caz)e™ + cgexp [(1 + V3)z] + csexp [(1 — Vv3)z].

21. The auxiliary equation is m® + 4m + 4 = 0 and its roots are m = —2, —2. The general
solution is ¥ = (c1 + cez)e™ % and ¢ = (~2¢; + ¢a — 2coz)e”%®. But y(0) = ¢; = 1 and
y'(0) = —2¢; + c3 = ~1, so that ¢; = ¢3 = 1. The particular solution is y = (1 + z)e™ 2%,
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12.4. SIMPLE NETWORKS 93

di R E . e
The first of these equations can be written —_2 = -~~——£I Iz + —. Differentiating the
dt Lq La Ly

second equation and using the third equation to eliminate I, yields

dly

Ry— 7 +R3 dt "C“'Iaﬁo,
dly dly  dlz 1
RlTE—t-+R (dt dt)+ ( Ig)««o

y!
Replacing %52- by its equivalent gives us

dl B
(Ra +R3)‘a't£ Lj( ~Ryly — Rpla + E) + “““(fi L) =0,

dly _ RiR; 1 R2R3 i - R3E
(R1 +R3)-Zi-£- = (—- I, 03) I + ( I -+ Cg) I+ I, .

The system in I; and Iy can now be written

Cy Ry Ra+-L CoRoHg— L RaE
Sy SRR (1 ‘_1_“;51; iR
(12)z( 3Lz 1+}§€ 3Lz xiég)(h)ﬁ-(ﬂr&z’).

I L3

The nature of the solutions of this system depend upon the roots of the characteristic equation

_ CiBatla o _ C3RgR
Eabzgﬁx-i“ﬁsj R a:akagﬁx'Fst

_..wlm

2
which may be written

CgRle -+ L;z _}_23] Rz(CgRlR;g -+ L:z) _ Rl(CgRgR;; - Lg)
C3Ly(Ry + Rs) CaL4(Ry + R3) C3L#{R; + R3)

m? + [ =,

or
C3La(Ry + Ra)mg + [Cg(RlRQ + RoR3 + RaRy) + Lg}m + R+ Ry =0.

Note that the answer given in the book has a typographic error. The last term should be Ry,
not Ra.
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18.11. MANY-TERM RECURRENCE RELATIONS 193

- Qn-1

ntctl for n > 1. Solving this recurrence

The indicial equation is (¢ + 1)? = 0 and a, =
relation we get

(=1)" ag
T (+2) - (etn+1)

[ o)
(*1)n$n+6
wn g€
Yo =1 +§=:{c+2)m(c+n+l)’

(~1)" zmte [_ 1 m.}.,,__.]

Bye
-é—wv.-yclna:—i-z( +2) - (c+n+1)

Substituting ¢ = —1 gives the solutions

PRI G LE i Y€ i

ﬂwl nwl

n+1H ikt
Yq = W1 lnx+; por) .

25. Set L{y) = (1 — 2z)y"” — 2(2 + )y’ + 18y. Then

o0

L{y) = Z [(n+c)n+c—1)—4(n+c)ayz™te!

n=0

- i[Q(n +e)(n+c—1)+2(n + c) - 18]aza™**

n=0

o0 o0
= Z(n +e)(n+c—5a,z™tel - Z 2(n+c—3)(n+c+ 3azz"te

1i==0 n==0

= ¢(c — Blagz® ! + i {(n +ci(n+c—5la, —2(n+e~4{n+e+ g)an_l}xn—i—c»«l.

n=1

Choosing ¢ = 0 and n{n — b)a, = 2(n — 4)(n + 2)a,- for > 1,

1-{~4)ay=2(-3)-3 ap, ar = § ag,
2'('—*3)(1232'(“2)'401, a2:12a0,
3.(~2) a3 =2-(~1)-5 a, az = 20 ag,
4:{~1)ag=2-(0)-6 as, ag =0,
5-{0)ag=2-(1)-7 aq, as arbitrary.

Download full file from buklibry.com



Full file at
https://buklibry.com/download/solutions-manual-elementary-differential-equations-8th-edition-by-rainville-bedient/

25.2. THE WAVE EQUATION 233

2
This linear differential equation has general solution u(x, 8) = ¢;(s)e*® 4 ¢y(s)e™ 4% — 7 In

1 2
order for lim, .., to exist we must take ¢;{s) = 0. As x — 0 we need to take == ca(8) ~ 7

That is ca(s) = -35, We therefore have u{z, 8) = %e”"”’ - —25 An inverse transform now
yields the solution y(z, t) = 3(t — 4z)a(t — 4z) — 2t.

25.2 The Wave Equation

1. Direct application of the Laplace transform gives us the transformed system

2

s*u ~s(z ~2%) = z-0t u—0 -1, u—0.

u

dz?’
z z* 2

The linear equation has as its general solution u = ~ — — — — 5 +ae I+ ege®®. The

8
condition  — 0%, u — 0 implies that ¢; + ¢; = 2/s3, The condxtzon 1", u—0 xmphes
that e *c; + e®cy = 2/5°. From these two equations we obtain

2e%
u -ng - n -—(ﬂ+l)a
T B(1+e) e"”) T8 Z € and B(1+e*) Z( 1)

n=0 n=0

Therefore

x pt
u{z, 8) = -‘; _ _;.. — 33 33 Z 1)"e ~{n+x)s + Z( 1)” e~ (nti-z)s

n=:0 =0

The inverse transform now yields

y(z, t)z:z:—a:g~—t2+§:(-~1)“{(tv—n~m)2a(t~n~:r)+(t~«~n—~1+:c}2a(t—-nw1+:z)}.

n={

25.5 Diffusion in a Slab of Finite Width

1. Direct application of the Laplace transform gives us the transformed system

d*w . dw
3w-1=-ax—-—5, z2—0", w—0, 1 ,E-;——M).
The linear equation has as its general solution w = -1— + ¢y sinh (zv/8) + cycosh (x+/s). The

condition z — 0%, w — 0 implies that c3 = ~1/s. Thus

2 Vaer cosh (av3) - ;}; sinh (zv/5).
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