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Chapter 1 

Definitions; Families of Curves 

1.2 Definitions 

All answers in this section are determined by inspection. 

cn
 

7. 

9. 

il. 

13. 

15. 

. The equation is ordinary, linear in x, and of order 2. 1 

3. The equation is ordinary, nonlinear, and of order 1. 

The equation is ordinary, linear in y, and of order 3. 

The equation is partial, linear in u, and of order 2. 

The equation is ordinary, linear in x or y, and of order 2. 

The equation is ordinary, linear in y, and of order 1. 

The equation is ordinary, nonlinear, and of order 3. 

The equation is ordinary, linear in y, and of order 2. 

1.3. Families of Solutions 

1. 

11. 

Rewriting the equation yields y = / a? + Idx +c. Integrating, we have y = gx! + 2% +46, 

Rewriting the equation yields y = 4 / cos 6a dx + ¢. Integrating, we have y = 2 sin Oz +c. 

dz+c. Integrating, we have y = arctan (2/2)+c. 
1 

Rewriting the equation yields y = 2 / ye 

. Rewriting the equation yields y = 3 / e* dz. Integrating, we have y = 3e* +c, Substituting 

the initial conditions gives 6 = 34+ corc= 3 so y = 3e7 +3. 

As in Example 1.2, y = ce**. Substituting the initial conditions gives 3 = ce® = c so y = 3e%*, 

Rewriting the equation yields y = 4 / sin 2a dx. Integrating, we have ~2cos2¢+c. Substitut- 

ing the initial conditions gives 2 = -2cos7 +e = 2+corc=0s0 y = —2c0s 2u.
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7.3. THE AUXILIARY EQUATION: REPEATED ROOTS 43 

20. 

a7. 

29. 

The auxiliary equation is m* — 2m — 3 = 0 and its roots are m = 3, —1. The general solution 

is y = cye** + cpe7* and y'! = 3cye** — cge™*. But y(0) =e, + cp = 4 and y’(0) = 3c; — cg = 0," 
so that cy = 1, co = 3. The particular solution is y = e** + 3e7*. Thus y(1) = e* + e7}. 

The auxiliary equation is m? —m —6 = 0 and its roots are m = 3, —2. The general solution is 
y = c,e°* +972" and y! = 3c) e9* —2cge7**. But y(0) = ce, +¢2 = 3 and y’(0) = 3¢;-2cg = -1, 
so that cy = 1, c, = 2. The particular solution is y = e9* +2e7?*. Thus y(1) = e? + 2e7?. 

The auxiliary equation is m? ~ 2m? —-5m+6 = 0 and its roots are m = 1, 3, -2. The 

general solution is y = cye* + c2e5* + cge7**, so that y/ = cye” + 3cge°* — Qege~**, and 
y” = cye™ + 9cge?® + dege~**. But y(0) = cr t+ eo +e3 = 1, y’(O) = cy + 3cq - 2c3 = —7, 
and y"(0) = ¢, + 9c2 + 4cg = —1. Thus c; = 0, cg = ~1, cg = 2. The particular solution is 
y = —e* + 2e7™* and y(1) = —e? + 2e7?. 

7.3 The Auxiliary Equation: Repeated Roots 

1. 

11. 

13. 

15. 

17. 

19. 

ai. 

The auxiliary equation is m? — 6m +9 = 0 and its roots are m = 3, 3. The general solution 
is y = (cy + cox)e*. 

The auxiliary equation is 4m? + 4m? +m = 0 and its roots are m = 0, -}, ~4. The general 

solution is Y= cy + (cg + C3) exp (—4z). 

The auxiliary equation is m+ + 6m3 + 9m? = 0 and its roots are m = 0, 0, ~3, ~3. The 
general solution is y = cy + coz + (c3 + caz)e7 3". 

The auxiliary equation is 4m3 — 3m +1 = 0 and its roots are m = —1, 4, d The general 

solution is y = (c, + cox) exp ($2) + cge7*. 

The auxiliary equation is m? + 3m? + 3m +1 = 0 and its roots arem = —1, —1, —1. The 
general solution is y = (c, + car +cgr7)e7. 

The auxiliary equation is m> —_m? = 0 and its roots are m = 0, 0, 0, 1, —1. The general 
solution is y = c; + cox + ¢gx? + cge™ + cge7*. 

The auxiliary equation is 4m‘ + 4m — 3m? — 2m+1 = 0 and its roots are m = —1, —1, 4, 4. 
The general solution is y = (cy + conje~* + (eg + cgx) exp ($2). 

The auxiliary equation is m4 + 3m — 6m? —28m—24 = 0 and its roots arem = —2, —2, —2, 3. 
The general solution is y = (cy + cg@ + egz7)e7?* + ege**. 

The auxiliary equation is 4m —23m3 ~33m?—1l7m—3 = 0 with roots m = —1, —1, 3, — $3 ~%. 

The general solution is y = (ce; + cgr)e7* + cge?* + (cq + csr) exp (—§2). 

The auxiliary equation is m* — 5m? — 6m — 2 = 0 and its roots are m = 1+ /3, —1, —1. The 
general solution is y = (c, + cgr)e~* + cg exp [(1 + V3)a] + cg exp [(1 — V3)z]. 

The auxiliary equation is m? + 4m +4 = 0 and its roots are m = —2, —2. The general 

solution is y = (c; + cgz)e~** and y! = (—2e; + cg — 2cgr)e~**. But y(0) = c, = 1 and 
y'(0) = —2c, +c, = —1, so that c; = cg = 1. The particular solution is y = (1 + z)e7?*.
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12.4, SIMPLE NETWORKS 93 

dl. R E 
The first of these equations can be written wet ~—h - fey, +-—. Differentiating the 

at La Ly Ly" 
second equation and using the third equation to eliminate J, yields 

al, 
Riz + Rt = + oh =0, 

aly di, diy 1 
Riv + Bs (Ge - +e -x- (I) ~ In) = 0. 

I 
Replacing a by its equivalent gives us 

di R 
(Ry + Rs) - zt ~Ril; ~ Relg+ E) + a (h- fn) = 0, 

dl, _ RRs | 1 RRs 1 RE 
(Ry + Rg) ct = ( Tp a) he (- Lo +z) I+     

The system in J, and Iz can now be written 

CaRyRatL _ alte Re ~ L I RE 
_ (- cent; ~obiteteey \ (Lh), TaRi +R) 

Z -R — a Ty £ * 

The nature of the solutions of this system depend upon the roots of the characteristic equation 

_ GaRyRstle 9 __OsRgR 
Cebgthi the) R ~ GbR 

— #2 —m) 

  

  2 

which may be written 

  == Q, m+ CsRiRg + Lo =| Ro(CgRiR3+L2)  Ri(CsR2Rs — L2) 
C3L2(R; + Rs) C3E2(Ri + Ra) C3L3(Ry + Rs) 

or 

C3Lo(Ry + Rg)m? + [(C3(RiR, + Rohs + Rg Ry) + L|m + hy + Rg =0. 

Note that the answer given in the book has a typographic error. The last term should be Re, 
not Rg.
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18.11. MANY-TERM RECURRENCE RELATIONS 193 

— Ont 
ntet+l for n > 1. Solving this recurrence The indicial equation is (c + 1)? = 0 and a, = 

relation we get 

(-1)" ao 
~ (e+ 2)--(etn +l)’ 
_ oe of (-1)* arte 

Yes + ery ern Fy’ 

OYe (-1)" 2?te 

Bm uma+ oh +2).- sees | aa cael 
  

Substituting c = —1 gives the solutions 

peat Se att ye cota 
rn reed 

1)"+1 7, gn 1 

Y= whet 5 CU. 

  

25. Set L(y) = a(1 — 2x)y” ~ 2(2 + x)y’ + 18y. Then 

L(y) = Ss, [(n+e)(n+e-1)—4(n+0e)]a,2"te"! 
n=O 

- 5 [2n +c)(n+¢e—-1)+2(n +c) - 18]an2"** 
n=O 

= y(n +e)(n+e-5)a,z™te-? — s An+e-3})(n+et+ 3)agz™t? 
re=D n=) 

= e(e — 5)agz®! + 3 [(n +e)(n +e - 5a, — 2(n+e~- 4)\(n+e+ 2)an—sJarte“}, 

n=l 

Choosing c = 0 and n(n — 5)ay = 2(n — 4)(n + 2)a,_1 for > 1, 

L-(—4) a, = 2-(-3)-3 ao, a; = 3 ap, 
2+(—3) ag = 2+ (~2)-4 a), a2 = 12 ag, 

3-(—2) ag = 2+(—1)-5 ag, ag = 20 ag, 
4-({~1) ag = 2-(0)-6 a3, aq = 0, 

5- (0) a5 = 2-(1)-7 ag, ag arbitrary.
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25.2. THE WAVE EQUATION 233 

_ 2 
This linear differential equation has general solution u(x, 8) = c;(s)e#** + e2(s)e~ 48" — =z: In 

] 2 
order for lim, _.o. to exist we must take ci(s) = 0. As 2 — 0 we need to take 2 co(s) ~- Zz 

That is co(s) = s We therefore have u(z, 4) = Senses - 2. An inverse transform now 

yields the solution y(a, t) = 3(¢ — 4x)a(t — 4a) — 2t. 

25.2 The Wave Equation 

1. Direct application of the Laplace transform gives us the transformed system 

2 s*u ~ s(x ~ 27) = z0t, u70, r 417, uO. 
u 

dx?’ 

zc gg 2 
The linear equation has as its general solution u = ~— — — — 3 + cye7** + cge®*. The 

8 
condition z ~+ 0*, u — 0 implies that c; + cz = 2/s°. The condition z+ 17, u—+0 implies 
that e~*c, + e°co = 2/s3. From these two equations we obtain 

2e7* y* “na, = n ~(n+l)s 

~ 38(1+e-*) 5 ~ 38 axe . and cz si(l+e*) 33 = Wyre 
nex n=O 

Therefore 

u(x, é) = - _ = ~ 5 +a 2s 1)"e —(n+2)8 +3 2 (-1) 1)” etl -2)s 

n==Q re==0 

The inverse transform now yields 

y(z, t)= oat 24 S(-1)"[(t —n—2alt—n—2) + (¢-n—-142)alt—n—142)], 
ned 

25.5 Diffusion in a Slab of Finite Width 

1, Direct application of the Laplace transform gives us the transformed system 

d*w dw 
F g—0t, w+0,2-417, — 0. ~[= sw 7 

The linear equation has as its general solution w = : + ¢, sinh (v/s) + cgcosh(x/s). The 

condition 2 — 0+, w — 0 implies that cg = ~1/s. Thus 

oe = Vacs cosh (2/8) ~ % sinh (2/3).
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