CHAPTER 1

FIRST-ORDER DIFFERENTIAL EQUATIONS

SECTION 1.1
DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS

The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of
differential equations, and to show the student what is meant by a solution of a differential
equation. Also, the use of differential equations in the mathematical modeling of real-world
phenomena is outlined.

Problems 1-12 are routine verifications by direct substitution of the suggested solutions into the
given differential equations. We include here just some typical examples of such verifications.

3. If y,=cos2x and y, =sin2x, then y/=-2sin2x and y,=2co0s2x o0
¥ = —4cos2x = —4y, and ) = —4sin2x = —4y,.

Thus y/+4y, = 0 and »,+4y, = 0.

4. If yy=¢* and y,=¢", then y =3¢ and y,=-3¢"" so0
¥ =9e" =9y, and ] =97 =9y,
5. If y=e*—¢ ™, then y=¢"+e“s0 y'—y = (e" + e_")— (e" —e_") = 2¢™". Thus

Vv = y+2e .

X X

6. If yy=¢”* and y,=xe”", then y/=-2e7, y/=4e”", y,=¢7 —2xe", and

Y, =—4e +4xe”*. Hence
W+ayi+4y = (4e‘2’“)+4(—2e_2")+4(e_2") =0

and
Vi+4yv,+4y, = (—4e_2’“+4xe_2")+4(e_2"—2xe_2")+4(xe_2") = 0.
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Integration of y'=xe™ yields
y(x) = Jxe_x dx = Jue” du = (u-1e" = —(x+D)e*+C

(when we substitute # =—x and apply Formula #46 inside the back cover of the
textbook). Then substitution of x =0, y=1 gives 1=-1+C, so

y(x) = =(x+1)e " +2.

If a(t) = 50 then w(r) = [50dt = 50¢+v, = 50¢+10. Hence
x(1) = J(50t+10)dt: 2562 +10¢+x, = 251 +10¢+20.

If a(r) = =20 then v(t) = [(~20)d¢ = ~201+v, = —20¢~15. Hence
x(1) = [(206-15)dt = =104 =15¢+x, = =108 =15+5.

If a(f) = 3t then w(t) = [3tdt = 3 +v, = 3£ +5. Hence
x(t) = [ +35)di= 46 +51+x, = 11 +51.

If a(f) = 2t+1then (1) = [(2t+1)dt = £ +1+v, = £ +¢—7. Hence
x(t) = [(P+t-Tydi= 30 +41=Tt+x, = 1 +11-Tt+4.

If a(t) = 4(t+3)°. then v(t) = j4(t+3)2 dt = £(t+3)’°+C = £(t+3)’ - 37 (taking
C=-37 sothat v(0)=-1). Hence

x(t) = [[4(e+3)=37]di= L(t+3)* =371+ C = {(¢+3)' =37-26.

If a(t) = 1/~Nt+4 then w(r) = [UNt+4 dt = 2Ji+4+C = 2J1+4 -5 (taking

C=-5 so that v(0)=-1). Hence
x(1) = [t+4-5)dt= £(t+4)" =51+C = 4(1+4)7 -51-2

(taking C=-29/3 so that x(0)=1).
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tan~'(v/160) = —¢/5+C; v(0)=160 implies C=7x/4

Tt
t)y = l60tan| ———
(1) (4 5)
y(t) = 800 ln(cos(%—éjj+4001n2

We solve v(r) = 0 for +=3.92699 and then calculate 1(3.92699) = 277.26 ft.

7

21.  Equation: Vi=—g-pv, v0)=v, »0) =0

: dv plgdv
Solution: J = — |dt; e~ = - |Jgpds
g+pv’ '[ J']+(,/p/gv)2 J

an” (Jp/gv) = —Jgp 1+C; v(0)=v, implies C=tan” (Jp/gv,)

v(t) = —\/gtan[t\/g—tan‘1 [VO\/ZN
P g

We solve w() = 0 for ¢ =

! tan™' ["o B] and substitute in Eq. (17) for y(?):
V&P g

1, ‘cos(tan_1 voJp/ g —tan™ vo\//Tg)‘
P ; n‘ cos(tan‘1 vo\//Tg) ‘

%ln(sec(tan_lvo,/p/g)) = %ln /1+%)§

2
2p g

By an integration similar to the one in Problem 19, the solution of the initial value problem
Vv = =32+0.075v*, w(0)=0 is

22.

v(t) = —20.666tanh(1.54919¢)

so the terminal speed is 20.666 ft/sec. Then a further integration with »(0)=0 gives

p(t) = 10000 —13.333 In(cosh(1.549191))

We solve »(0)=0 for = 484.57. Thus the descent takes about 8 min 5 sec.
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(b)  Consider the matrix A = {1 O} with characteristic equation (4—1)* =0 and the
11

0 0
single eigenvalue A=1. Then A-1 = { } and it follows that the only associated
10

11
cigenvector is a multiple of [0 l]T. The transpose A" = { } has the same
0 1

characteristic equation and eigenvalue, but we see similarly that its only eigenvector is a
multiple of [I 0], Thus A and A’ have the same eigenvalue but different

eigenvectors.

Ifthe nXn matrix A= [aij] is either upper or lower triangular, then obviously its

characteristic equation is
(a,-A)(ay,—-A)--(a,, -1) = 0.

This observation makes it clear that the eigenvalues of the matrix A are its diagonal
elements a,,,a,,, -, a

nn "’

If [A-Al| = (-1)"A" +¢,, A" +---+ ¢ A+¢,, then substitution of A =0 yields

c, = |A - OI| = |A| for the constant term in the characteristic polynomial.

c d
(a—=A)Nd—-A)-bc = 0, thatis, A>—(a+d)A+(ad —bc) = 0. Thus the coefficient of
A in the characteristic equation is —(a+d) = —trace A.

b
The characteristic polynomial of the 2X2 matrix A = [ﬂ } is

If the characteristic equation of the nxn matrix A with cigenvalues 4, 4,,--, 4, (not
necessarily distinct) is written in the factored form

(A= A)A= D) (A=4,) = 0,

then it should be clear that upon multiplying out the factors the coefficient of A"~ will be
—( A+ A+ + A, ). But according to Problem 38, this coefficient also equals —(trace A).

Therefore A +A,+---+ A, = traccA = g, +a,+a

nn'

We find that trace A =12 and det A =60, so the characteristic polynomial of the given
matrix A is

p(A) = =2 +1247 + ¢, A+60.
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3
At (nr,0), n even: The Jacobian matrix J = L 2} has characteristic equation

A* =54 +5=0 and positive real eigenvalues A, =1.3812, 4, =2.6180. Hence (nr,0) is
a nodal source if 7n is even, as we see in the figure on the preceding page.

At (nr,0), n odd: The Jacobian matrix J ={ 2} has characteristic equation

A+ A4 —-5=0 and real eigenvalues 4, =-2.7913, A, =1.7913 of opposite sign. Hence
(nm,0) is a saddle point if n is odd, as we see in the figure.

As preparation for Problems 9-11, we first calculate the Jacobian matrix

0 1
J(x,») { }

-’ cosx —c¢

of the damped pendulum system in (34) in the text. At the critical point (n7z,0) we have

e
(n7,0) = —w’cosnt —c| |*a@ —c|

where we take the plus sign if 7 is odd, the minus sign if #n is even.

9.

10.

11.

500

If n is odd then the characteristic equation A*+cA—@’ =0 has real roots

—cxNE +40’

hodo = =2

with opposite signs, so (nz, 0) is an unstable saddle point.

If n is even then the characteristic equation A*+cA+@” = 0 has roots

—ctAc -4’

hodo = =2

If ¢’>4@’ then A; and A, are both negative so (n7, 0) is a stable nodal sink.

If n isevenand ¢’ <4’ then the two eigenvalues

2 2 .
A4 = —ctNc —4w I Y Fycae
2 2

2

are complex conjugates with negative real part, so (nz, 0) is a stable spiral point.
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