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(e) Z1 = (-3,1), z2 = (1,4) 

X 

( d) Z¡ = X¡ + iy¡, Z2 = X¡ - iy¡ 

y 

X 

2. Inequalities (3), Sec. 4, are 

Rez S IRezl S lzl and Imz S llmzl S lzl. 

These are obvious if we write them as 

3. In order to verify the inequality "V21zl ~ IRezl + llmzl, we rewrite it in the following ways: 

"'12~x2 + y2 ~ lxl + lyl, 

2(x2 + y2) ~ lxl2 + 21xllyl + lyl2, 

lxl2 -21xllyl + lyl2 ~ O, 

(lxl-lyl)2 ~ O. 

This last form of the inequality to be verified is obviously true since the left-hand side is a 
perfect square. 
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6. The four roots of the equation z4 + 4 = O are the four fourth roots of the number -4. To 
find those roots, we write -4 = 4exp[i(n+ 2kn)] (k = 0,±1,±2, ... ). Then 

To be specific, 

r;; i11:t4 . r,;2( n . • n) r,;2 ( 1 . 1 ) 1 . c0 = v .u = v"' cos 4 + z sm 4 = v"' ,fj, + z ,fj, = + z , 

This enables us to write 

c1 = c0ei11:t2 = (1 + i)i = -1 + i, 

i311:/2 (1 ')( ') 1 . c3 = c0e = + 1 -1 = -1. 

z4 + 4 = (z - c0 )(z - c¡)(z-c2 )(z-c3 ) 

= [(z -c1)(z - c2 )] • [(z - c0 )(z- c3)] 

= [(z+ 1)-i][(z+ l)+ i], [(z-1)-i][(z-l)+i] 

= [(z+ 1)2 + l]·[(z-1)2 + 1] 

= (z2 +2z+2)(z2-2z+2). 

(k = 0,1,2,3). 

7. Let e be any nth root of unity other than unity itself. With the aid of the identity (see 
Exercise 10, Sec. 7), 

we find that 

9. Observe first that 

1 
2 n-1 1- zn 

+z+z +···+z =--
1-z 

2 n-1 1- en 1-1 
l+c+c +··+e =--=--=O. 

1-c 1-c 

(z :#: 1), 

( 
l/m)-1 [mr i(8+2kn)]-l 1 i(-8-2kn) 1 i(-8) i(-2kn) 

z = vrexp = mrexp = mrexp--exp 
m vr m vr m m 
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lf the Cauchy-Riemann equations u,,= v,, u,= -v,, hold, then 

sinxcoshy = O and cosxsinhy = O. 

Toe first of these equations tells us that sinx = O, or x = me (n = 0,±1,±2, ... ). Since 
cosnn * O, it follows that sinhy = O, or y= O. Consequently, the Cauchy-Riemann 
equations hold only when 

z=nn (n=O±l,±2, ... ). 

So there is no neighborhood throughout which/ is analytic, and this means that cosz is 
nowhere analytic. 

16. (a) Use expression (12), Sec. 33, to write 

cos(iz) = cos(-y + ix) = cos y cosh x - i sin y sinh x 

and 

cos(iz) = cos(y+ix) = cosycoshx-isinysinhx. 

This shows that cos(iz) = cos(iz) for all z. 

(b) Use expression (11), Sec. 33, to write 

sin(iz) = sin(-y+ ix) = -sinycoshx-icosysinhx 
and 

sin(iz) = sin(y+ ix) = sinycoshx+ icosysinhx. 

Evidently, then, the equation sin(iz) = sin(iz) is equivalent to the pair of equations 

sinycoshx = O, cosysinhx = O. 

Since coshx is never zero, the first of these equations tells us that sin y= O. 

Consequently, y= nn (n = 0,±1,±2, ... ). Since cosnn = (-lf * O, the second 
equation tells us that sinhx = O, or that x = O. So we may conclude that 
sin(iz)=sin(iz) ifandonlyif z=O+inn=nni (n=0,±1,±2, ... ). 

17. Rewriting the equation sinz = cosh4 as sinxcoshy+icosxsinhy = cosh4, we see that we 

need to solve the pair of equations 

sin x cosh y = cosh 4, cos x sinh y = O 
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(b) Here C:z=x(OSxS2). Toen 

2 [ 2 ]2 f/z-l)dz= J<x-l)dx= ~-x =O. 
o 2 o 

3. In this problem, the path C is the sum of the paths C1 , C2, C3 , and C4 that are shown below. 

y C3 - l+i 

e,~ 
4 ~c2 

... 
o ~ 

1 e, X 

The function to be integrated around the closed path C is f(z) = 1re1rz. We observe that 
C = C1 + C2 + C3 + C4 and find the values of the integrals along the individual legs of the 
square C. 

(i) Since C1 is z = x (OS x S 1), 
1 

f c. ,retrfdz = ,r J etrx dx = etr -1. 
o 

(ii) Since C2 is z = 1 + iy (OS y S 1), 

1 1 fe 1re1rl dz = ,r J e1r<H,>idy = e1r m J e-i1r, dy = 2e1r. 
2 

0 0 

(iii) Since C3 is z = (1- x) + i (OS x S 1), 

1 1 f C3 ,retrldz = ,r f etr((l-x)-í](-l)dx = ,re1' I e-trxdx = etr -1. 
o o 

(iv) Since C4 is z = i(l- y)(O S y S 1), 

1 1 fe. ,retrldz = nf e-tr(l-y)i(-i)dy = m f /tr'dy = -2. 
o o 

Finally, then, since 

we find that 
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2. (b) Replacing z by z-1 in the known expansion 

wehave 

So 

.. n 

e'=L~ 
n=O ni 

ez-1 = f (z-lt 
n=O ni 

.. ( l)n 
e' =e'-1e=el z-

r.=O ni 

3. W e want to find the Maclaurin series for the function 

To do this, we first replace z by -(z4 
/ 9) in the known expansion 

1 .. 
-=lzn 
1- Z n=O 

as well as its condition of validity, to get 

1 .. (-lf 
l+(z4 /9) = ~~z4n 

(lzl< oo), 

(lzl< oo). 

(lzl< oo). 

(lzl< 1), 

(lzl < ../3). 

Toen, if we multiply through this last equation by ~. we have the desired expansion: 
9 

f (z) = i, (-It 4n+1 
k,/ 32n+2 Z 
n=O 

(lzl < ../3). 

6. Replacing z by z2 in the representation 

.. z2n+l 

sinz = l<-It--
n=o (2n + 1)1 

(lzl< oo), 

wehave 

.. z4n+2 

sin(z2 )= ¿(-lf--
n=o (2n + 1)1 

(lzl< oo). 
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1 

(b) When l(z) =--2, we have 
l+z 

J._ 1(.!.)=-1-= 1 = l-z2 +z4-··· 
z2 z l+z2 l-(-z2) 

Thus 

1 l(z)dz = 2mRes { 1(.!.) = 2ni(O) = O. 
C t=O z z 

(e) lf l(z) = .!., it follows that ~ 1(.!.) = .!.. Evidently, then, 
z z z z 

1 l(z)dz = 2niRes ~ 1(.!.) = 2ni(l) = 2ni. 
C t=O z z 

(O <lzl< 1). 

4. Let C denote the circle lzl= 1, taken counterclockwise. 

.. n 

( a) To.e Maclaurin series ez = L ~ (1 zl < 00) enables us to write 
n=O nf 

(b) Referring to the Maclaurin series for e:. once again, let us write 

n ( 1) ni, 1 1 i, 1 n-k z exp - =z LJ-¡·-¡-= LJ7' 
Z k=ok, Z k=ok, 

(n = 0,1,2, ... ). 

N ow the .!. in this series occurs when n - k = -1, or k = n + l. So, by the residue 
z 

theorem, 

J zn exp(.!.)dz = 2ni 
1 

e z (n+l)! 
(n = 0,1,2, ... ). 

Toe final result in part ( a) thus reduces to 

l exp z+- dz = 2niL . ( 1) .. 1 
e z n=on!(n+l)! 
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6. (a) Let us first use the branch 

( 
re 3rc) lzl> O, - 2 < argz < 2 

and the indented path shown below to evaluate the improper integral 

-R 

- dx 

[ .../x(x2 + 1) · 

y 

o p 

Branch cut 

R X 

Cauchy's residue theorem tells us that 

I f(z)dz+J. f(z)dz+J f(z)dz+ J. f(z)dz=2rciRe.sf(z), 
4 ~ lz ~ PI 

cr 

f f(z)dz+J f(z)dz=2rciRe.sf(z)-J. f(z)dz-J. f(z)dz. 
Li Lz z=1 cp e,. 

Since 

4: z = re;º = r (p S r S R) and - 4.: z = r/tr = -r (p S r S R), 

we maywrite 

R R R 

L t<z)dz + f Lz t<z)dz = f w<:; + 1> -i f w<:; + 1> = (1-i) f w<:; + 1>. 
p p p 

Thus 

(1-i)fR ..¡; d; =2mRe.s/(z)-J. f(z)dz-J. f(z)dz. 
r(r + 1) z=1 cp e,. 

p 
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