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[J DIAGNOSTIC TESTS

Test A Algebra

L (@ (=8)" = (=3)(=3)(-3)(-3) = 81 (b) =3" = -(3)3)(3)(3) = 81
@3i=L_1L @ 2 — 5 _52_gs
3t 81 521
CIORSORS (167 = o = —— = =

- 163/4 (4 16 )3 23

2. (a) Notethat v/200 = /100 - 2 = 10v/2 and v/32 = /16 - 2 = 4 /2. Thus /200 — v/32 = 10 V2 — 42 = 6 /2.

(b) (3a>b)(4ab?)? = 3a®b16a2b* = 48a°b”

3m3/2y3 -2 B x2y71/2 2 3 (x2y71/2)2 3 x4y71 24 z
© 22y —1/2 T\ 323723

T (B2%2y) T 0z%yF T 9atyby 97
3. (@) 3(x+6) +4(2r —5) =3z + 18 + 82 — 20 = 11z — 2

(0) (z +3)(4x — 5) = 42® — 5z + 122 — 15 = 42® + 7z — 15

© (Va+v0) (Va-vb) = (wa)lwa\/zwa\/z- (\/5)2:@_6

Or: Usetheformulafor the difference of two squaresto see that (\/5 + \/5) (\/_ - \/5) = (\/5)2 - (\/l_) )2 =a—b.

(d) (22 +3)* = (2z + 3)(2z + 3) = 42 + 62 + 62 + 9 = 4a® + 122 + 9.

Note: A quicker way to expand this binomial isto use the formula (a + b)? = a® + 2ab + b* witha = 2z and b = 3:

(2z 4+ 3)%? = (22)% +2(2z)(3) + 32 = 42® + 120+ 9

(€) See Reference Page 1 for the binomial formula (a + b)® = a® + 3a®b + 3ab® + b3. Using it, we get
(z+2)% = 2° +322(2) + 32(2?) + 2° = 2% + 62° + 122 + 8.

4. (@) Using the difference of two squares formula, a®> — b* = (a + b)(a — b), we have

4a* — 25 = (2x)% — 5% = (22 4+ 5)(2z — 5).

(b) Factoring by trial and error, we get 222 + 5z — 12 = (22 — 3)(z + 4).

(c) Using factoring by grouping and the difference of two squares formula, we have
23 =322 —dx+12=2*(z-3)—4(z —3) = (2> —4)(x — 3) = (z — 2)(z + 2)(z — 3).

(d) z* + 272 = 2(2® + 27) = z(z + 3)(2® — 3z +9)

Thislast expression was obtained using the sum of two cubes formula, a® + b> = (a + b)(a® — ab + b*) witha =«

and b = 3. [See Reference Page 1 in the textbook.]
(e) The smallest exponent on = is — 2, so we will factor out » /2.
3232 —9x1/? 6712 =327 V2 (2 — 304+ 2) = 322 (x — 1)(z — 2)

(f) 2%y — day = 2y(2® — 4) = 2y(z — 2)(z +2)
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6 [ DIAGNOSTIC TESTS
4—2>0 = z<4andz’-1>0 = (z—1)(z+1)>0 = z<-1lorz> 1. Thus, thedomain of
his(—o0,—1]U[1,4].
4. (a) Reflect the graph of f about the z-axis.
(b) Stretch the graph of f vertically by afactor of 2, then shift 1 unit downward.

(c) shift the graph of f right 3 units, then up 2 units.

5. (d) Make atable and then connect the points with a smooth curve: Y
x| 2| —-1]0|1]2 14
y| -8 -1|0|1]8 o 1 x
(b) sShift the graph from part (a) left 1 unit. Y /
1,
/!
-1 |0 X
(c) Shift the graph from part () right 2 units and up 3 units. Y

(d) First plot y = 2. Next, to get the graph of f(z) = 4 — 22, i
reflect f about the x-axis and then shift it upward 4 units. / \
0| 2 X
(e) Make atable and then connect the points with a smooth curve: Y

T 0 1 4 9 1

i)

(f) Stretch the graph from part (€) vertically by afactor of two.
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS 0 19

(© y = 2*(2 — 2®) = 22% — 2° isapolynomial of degree 5.

(d) y = tant — cost isatrigonometric function.

() y = s/(1+ s) isarationa function becauseit isaratio of polynomials.

() y = V2% —1/(1 + &z) isan agebraic function because it involves polynomials and roots of polynomials.

3. We notice from the figure that g and h are even functions (symmetric with respect to the y-axis) and that f isan odd function
(symmetric with respect to the origin). So (b) [y = =°] must be f. Since g isflatter than /. near the origin, we must have
(©) [y = 2®] matched with g and (a) [y = 2*] matched with h.
4. (8) Thegraph of y = 3z isaline (choice G).
(b) y = 3% isan exponential function (choice f).
(¢) y = z® isan odd polynomial function or power function (choice F).

(d) y = ¥z = ='/* isaroot function (choice g).

5. (8) An eguation for the family of linear functions with slope 2 Y b=-1

isy = f(z) = 2z + b, where b is the y-intercept.

(b) f(2) = 1 meansthat the point (2, 1) ison the graph of f. We can usethe \)
point-slope form of aline to obtain an equation for the family of linear

functionsthrough the point (2,1). y — 1 = m(z — 2), whichisequivalent

toy = mz + (1 — 2m) in slope-intercept form.

(c) To belong to both families, an equation must have slope m = 2, so the equation in part (b), y = mx + (1 — 2m),
becomesy = 2z — 3. It isthe only function that belongs to both families.

6. All members of the family of linear functions f(z) = 1 + m(x + 3) have

m=1
graphs that are lines passing through the point (—3, 1). V /
m=y

m=—1
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50 [ CHAPTER1 FUNCTIONS AND SEQUENCES

(d) Using acalculator to fit aline to the data givesy = (—0.618857) = + 4.368000. 4.5
y
0\ . - . 4
2
X
62. (& 500 (b) 3 3
N A s N
L ° o °
[ L] - [ ]
. d .
I log * | *
¥ . Y- . 09y - .
L] F e r
- ° L4
0 L] . L \ 70 0 N i L L /70

(c) Sincethelog-log plot is approximately linear, a power model is appropriate.

(d) Using a calculator to fit power curve to the datagives y = (0.894488) - 2:1-599230,

63. & 100 (b) 2 2
e A . ) . )
E L] r [ ) r L]
Ll . L]
¥ . logy . logy .
L] [} L]
0 L . L Vg 0 | b . L Jg 0 41\ bl \ , . L
* x log x
. . . . . . 100
(c) Sincethelog-log plot is approximately linear, a power model is appropriate. ~N

(d) Using a calculator to fit a power curve to the data gives y = (1.260294) - 2002959
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60 [ CHAPTER1 FUNCTIONS AND SEQUENCES

2

When a; = 11, thefirst 40 teremsare 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,

La, if a, isaneven number
40. any1 = . .
3a, +1 if a, isanodd number

16,8,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4, 2,1, 4. When a; = 25, thefirst 40 terms are 25, 76, 38,

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,16, 8,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1, 4.

The famous Collatz conjecture is that this sequence always reaches 1, regardless of the starting point a; .

PROJECT Drug Resistance in Malaria

1. Let g represent the frequency of ij individuals. For random and independent unions, the frequency of RR individuals will be
given by the probability that any two R individuals unite, that is, grr = p: - p: = p?. Similarly, the probability that any two S
individuals uniteis gss = (1 — p:) - (1 — p¢) = (1 — p¢)*. The probability that an RS diploid individual formsis
grs = 2p¢ (1 — pi) . Weinclude afactor of 2 since there are two ways of selecting RS: first an R individua, thenan S

individual, and vice versa. Observe that the sum of the frequencies grr + grs + gss = 1 asisrequired.

2. Scaling each frequency by the respective probabilities of survival gives Wrrps, Wss (1 — p)?,and  2Wrsp: (1 —p).
These new quantities no longer sum to one, but instead sum to W = Wgrp? + Wss (1 — pt)2 + 2Wrsp: (1 — pt). To ensure

the new diploid frequencies (after survival) g* sum to one, we normalize or divide by W giving gir = % p?,

Wi
g5 = 5= (1 —pe)?,and  gis = 2%% (1—po).

3. If thereare atotal of IV individualsin the population, then after reproduction, the number of R-type haploidsis

bN (gir + 398s) = BN (M%R 7+ V%S pe (1 — pt)> and the total number of haploid individuals

iISON (gir + grs + g&s) = N (1) = bN. Therefore, the frequency of R-type haploidsis

Wrr 5 . Was >
s ( W P Sy pe (1= pe) _ Wer 2 Wes (1—pi) = Werp? + Werspt (1 — pi)
bN W W Werp? + 2Wesp: (1 — pt) + Wes (1 — pr)?

4. Substituting Wrr = 4 and Wrs = Wss = 5 into p¢41 gives
%P% + %pt (1 —pe)
W2 5pe (1 —po) + 5 (1 —pe)?

pi 4 2pe (1 — py)
p?+4p (1 —p) +2(1—pi)?

Pt+1 =

_ —p} +2p:

—3p2 + 4pt + 2 — 4p, + 2p?
_ pf — 2py

P —2

Thisisthe same rational function discussed in Section 1.2.
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80 [ CHAPTER2 LIMITS

60. |CD| = bsinf, |DE| = |CD|sind = bsin? 0, |EF| = |DE|sinf = bsin® 6, . ... Therefore,

sin 6

|CD‘+‘DE|+|EF|+|FG‘+:bnglsln QZb(_l—siHQ

> sincethisis ageometric serieswith » = sin 6

and |sinf| <1 [because0 < 6 < 3.

PROJECT Modeling the Dynamics of Viral Infections

1. Vira replication is an example of exponential growth. The exponential growth recursion formulais N (¢ + 1) = RN (t) where
R isthe growth rate and N (¢) isthe number of viral particles at time¢. In Section 1.6, we saw the general solution of this
recursionis N; = Ny - R*. With R = 3 and Ny = 1, the recursion equation is Ny, 1 = 3N; and the general solution is

Nt = 3t.

2. Let ¢; bethe amount of time spent in phase 1 of the infection. Solving for ¢, in the equation N;, = Np - R™ using logarithms:

In(Nt, /No)

R The immune response initiateswhen N;, = 2 - 10°. Therefore the time it

In (R) =1In (Ny, /No) = t1 =
In(2 - 10%) — In(No)

takes for theimmune responseto kick inis¢; = n(3)

~ 13.2 — 0.91In(No). Hence, thelarger the initial
viral size the sooner the immune system responds.

3. Let t2 bethe amount of time since the immune response initiated, Rimmune be the replication rate during the immune response,
and dimmune be the number of viruses killed by the immune system at each timestep. The second phase of the infection is
modeled by a two-step recursion. First, the virus replicates producing N* = RimmuneVt, Viruses. Then, the immune system
killsvirusesleaving Ni,+1 = N™ — dimmune |€ftover. Combining the two steps gives the recursion formula

Nt2+1 = Rimmuneth - dimmune-

4. Theviral population will decrease over timeif AN < 0 at each timestep. Solving thisinequality for Ny, :

di mmune

Niy41 — Nty <0 = (Rimmune — 1) Nty — dimmune < 0 = Ny, < —————— wherewe assumed Rimmune > 1.
(Rimmune - 1)

Substituting the constants Rimmune = % -3 = 1.5 and dimmune = 500, 000 gives N, < 1,000, 000. Therefore, the immune
response will cause the infection to subside over time if the viral count isless than one million. Thisis not possible since the

immune response initiates only once the virus reaches two million copies.

5. Therecursion for the third phase can be obtained from the second phase recursion formula by replacing the replication and
desth rates with the new values. This gives Ny, 41 = RangNt; — darug Where t3 is the amount of time since the start of drug
treatment.

ddrug
(Rawg — 1)
Substituting the constants Rgrug = 1.25 and darug = 25, 000, 000 gives Ny, < 100, 000, 000. Therefore, the drug and immune

6. Similar to Problem 4, we solve for IV;, intheinequality AN = Ni,41 — N, < 0 and find that Ny, <

system will cause the infection to subside over time if the viral count is less than 100 million. Thisis possible provided drug

treatment begins before the viral count reaches 100 million.
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100 0O CHAPTER2 LIMITS

. - +. . _ . _ l 2 _ . _
Now we tekethe limitasr — 0": lim z = lim 2(, [1—3r2+ 1) lim, 2 (V1+1) =4.
So the limiting position of R isthe point (4, 0).

Solution 2: We add afew linesto the diagram, as shown. Note that
ZPQS = 90° (subtended by diameter PS). So ZSQR = 90° = £0QT

(subtended by diameter OT). It followsthat Z0QS = ZTQR. Also

/ZPSQ =90° — ZSPQ = ZORP. Since AQOS isisosceles, sois T R «x
AQTR, implyingthat QT = T R. Asthecircle Cs shrinks, the point

plainly approaches the origin, so the point R must approach a point twice

asfar fromthe origin as 7', that is, the point (4, 0), as above.

2.5 Continuity

1. From Definition 1, hn}; f(z) = f(4).

2. Thegraph of f hasno hole, jump, or vertical asymptote.

3. (8) fisdiscontinuousat —4 since f(—4) isnot defined and at —2, 2, and 4 since the limit does not exist (the left and right

limits are not the same).

(b) fiscontinuousfromtheleftat —2 since lim f(z) = f(—2). f iscontinuous from theright at 2 and 4 since

T——2"

hm+ f(z) = f(2) and hm+ (z) = f(4). Itiscontinuous from neither side a —4 since f(—4) is undefined.
r—2 r—4

4. giscontinuouson [—4, —2), (—2,2), (2,4), (4,6), and (6, 8).

5. Thegraph of y = f(x) must have adiscontinuity at 6. The graph of y = f(x) must have discontinuities
x = 2 and must show that lim+ f(z) = f(2). ax = —1andz = 4. It must show that
r—2

lim () = f(=1)and lim f(z) = f(4).

e y

y

\Q -1 0 4 x
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28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Ll CHAPTER3 DERIVATIVES

Another solution: Write y as a product and make use of the Product Rule. y = r(r2 +1)7%/2 =

v o=ro—3(? + )T + (P )TV 1= 00+ )T (P )Y = (00 ) TR = (7 )T

The step that students usually have trouble with is factoring out (2 + 1) =3/, But thisis no different than factoring out 2
from 2% + 2°; that is, we are just factoring out a factor with the smallest exponent that appears on it. In this case, f% is

smaller than —1.

y = ektanﬁ = y/ _ ektan\/i. di (ktan\/g) — 6ktan\/§(ksec2\/§. %m—l/z) _ ksecz\/.gektanﬁ
X

2V

y =sin(tan2z) = y’ = cos(tan2z) - di(tan 2z) = cos(tan 2z) - sec?(2z) -
x

1 t 1/2
0=\ ei= (m)

0= Hate) " () = ()

(P P a2 42

2t1/2 (2 +4)2 2U1/2(12 4 4)3/2

T

Using Formula5 and the Chain Rule, y = 2™ =

y' =25m7(In2) . dix (sinmz) = 25" (In2) - cos - ™ = 25 ™ (7 1n 2) cos Tx
o / . d , . .. s .
y =sin(sin(sinz)) =y’ = cos(sin(sinx)) T (sin(sinz)) = cos(sin(sinz)) cos(sinz) cosx

y = cot?(sinf) = [cot(sinf)]® =

y' = 2[cot(sin 0)] - die [cot(sin §)] = 2 cot(sin ) - [— csc?(sin O) - cos ] = —2cos f cot(sin f) csc?(sinh)

—1/2 —-1/2
y=Ve+Vat+ve = ¢ =1(a+Va+a) {14—%(1:-1—\/5) (1+%x*1/2)}
y = cos \/sin(tan 7x) = cos(sin(tan7z))*/? =
d d
y' = — sin(sin(tan 7x))*/2 - e (sin(tan7z))'/? = —sin(sin(tan 72))*/? - L (sin(tan7z)) /2 - e (sin(tan7z))
o e o e
— sin(tan ) - cos(tan ) - 4 tan T = — sin(tan ) - cos(tan7x) - sec?(mx) -
2 y/sin(tan 7x) dz 2 y/sin(tan 7x)

—7 cos(tan 7x) sec® (wx) sin 4 /sin(tan wz)

2 y/sin(tan )

2 2 2
=23 o =23 (In2 4 327} = 23" (In2)3%" (In 3)(2z
Yy Yy P

y=cos(z’) = ¢ =—sin(z?) 22 = —2zsin(z?) =

y" = =2z cos(z?) - 2z + sin(a?) - (—2) = —4a? cos(z?) — 2sin(z?)

y =cos’z = (cosz)® = ¢ =2cosz(—sinz)=—2cosxsinr =

y" = (—2cos ) cosx + sin z(2sinx) = —2 cos’x + 2sin’x

Note: Many other forms of the answers exist. For example, ¢y’ = — sin 2z and "’ = —2 cos 2.
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180 [ CHAPTER3 DERIVATIVES

2y = = gy = sin? diG (sin 260) = €5 2%(cos 20)(2) = 2 cos 20 e 2’

2.y=e (P -2t +2) =
v =e 2t —2) + (12 =2t +2)(—e ) =e (2 —2 12+ 2t — 2) = eI (—t* + 4t — 4)

t ;o =)1) —t(=2t) 1-+2> 41
RO -2 TTa-®)2  (1-f)e

2.y =

2.y =e"cosnr =
Y

€™ (cosnx)’ + cosnz (™) = " (—sinnz - n) + cosnz (€™ - m) = €™*(m cosnx — nsinnx)

el/z ) x2(61/z)/ N el/z (x2)/ xz(el/z)(—l/mQ) _ 61/1(251,‘) _el/z(l + 21,)

($2)2 x4 x4

u—1 4
2. y=——""—"—
y (u2+u+1> =

y,:4( u—1 )3d< u—1 >:4< u—1 )3(u2+u+1)(1)(u1)(2u+1)

wHu+1) du\u2+u+1 w+u+1 (u? +u+1)2

4u—17° wHu+l-20"+u+1  4(u—1)°(—u’+2u+2)

T (w2 +u+1)3 (u? +u+1)2 (u? +u+1)°
d 4., 2 d 3.0, .4 2 '
27.5(9@ +x y):%(a:+3y) = -4y +y - l+a” -y +y-20=14+3y =
1—y*—2zy
"May? +22—-3)=1—-y*—2 ==
Y (4zy” +2° - 3) Vo2 = Y = e

28. y =In(cschbz) = ¢ = (— csc bz cot 5x)(5) = —5 cot bz

cschx

sec 260

2. y=——-—
y 1+ tan 26

, (1+tan26)(sec20 tan20 - 2) — (sec26)(sec® 260 -2)  2sec 26 [(1 + tan 26) tan 20 — sec” 20)]

(1+ tan 20)2 (1 tan20)?
_ 2sec20 (tan20 + tan® 20 —sec®20)  2sec 20 (tan 26 — 1) 2 .2
- (1+ tan 26)® ~ (1+tan20)? [1+tanz = sec®«]

30. di;(xzcosy—l—sin%): dd (zy) = a*(—siny-y’)+ (cosy)(2x) +cos2y-2¢y =z-y' +y-1 =

dz
y' (—x?siny +2cos2y —x) =y —2wxcosy = ¥y = y — 2wcosy

2cos2y — r?siny — x
3l y =e““(csinz —cosz) =
y' = e“(ccosz +sinx) + ce®“(csinx — cosz) = e“*(c® sinx — ccosx + ccos x + sin x)

= e (?sinz +sinx) = e“sinx (¢* 4 1)
32.y:ln($2ex):1nx2—|—lnex:21nx+ac = y =2/z+1

1 d 2
3. y = logy (142 o1 d 2
y=logs(1+20) = ¥ =Gy @ T2 = @r 20 ms
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SECTION 4.3 L'HOSPITAL'S RULE: COMPARING RATES OF GROWTH U 221

CoST H . —sinx .
= = lim tanz = —oo.

. Thislimit has the form 3. lim ———— = lim
e—(r/2)t 1 —sinx  z—(x/2)* —COST  z—(x/2)*t

sindr W I 4cosdx 4(1)

. Thislimit hasthe form 2. = =
0 ;S0 tanbr | a0 bsec? (5z)  5(1)2

T 1 t .
. Thislimit hastheform 3. lim = 8 lim — = cosincee! — 1and 3t> — 0" ast — 0.
t—0 t3 t—0 3t2
o 3t 1 3t
. Thislimit hastheform 3. lim = Hiim 3 3
t—0 t t—0 1
T 1
. Thislimit hastheform 2. lim nzn lim li — lim = =0
Rl T — 00 T r—00 §£E_1/2 T — 00 \/E
1—sind O .
lim ——— = - = 0. L'Hospitd'sRuled t apply.
I o T 0 ospital’s Rule does not apply.
1im+ [(Inz)/z] = —co sincelnx — —oo asx — 01 and dividing by small values of z just increases the magnitude of the
x—0

quotient (In z) /2. L'Hospital’s Rule does not apply.

»

(Inx)

Iz

. Thislimit hastheform . lim m w =2 tim 22 o him MT 90y = 0

T — 00 xr Tr— 00 r—oo I Tr— 00

. Thislimit has the form 3.

i VIT 22— VT —dz 11 +22)7 Y22 3(1—4a)"V/2(~4)

z—0 x z—0 1

i (i + ) = e 2
a—0\/T+2z +1—-4dz/) /1 1

. Thislimit hastheform 2. lim — fm ¢ 1 1
s=lsinTe  es—1lmwcosma  w(—1) ™

Inx

Iz

5 —3"n . 51In5—31In3

. Thislimit hastheform 2. lim lim =In5—In3=1In2
0" =0 t t—0 1 3
. Thislimit hasthe form 2.
/10 u/10 | 1 u/10 | 1 u/10 | 1
. € . € 10 H 1 € 0 H 1 ... € 10 _ 1 w/10 _
ulin;o u B ulingo ’u,2 - % ulglgo u B m uli»n;o l m uli»m € =
N et -1 N BT S |
. Thislimit hastheform 2. Tlim &— =% 2, & Him&E =2
0 x—0 {E2 x—0 2x z—0 2 2
. This limit has the form 2.

. cosmT —CoSnT H ,. —msinmz+nsinne n .. —mZcosma +n cosnxr |, 2
lim ——————— — = lim = lim :—(n fm)
£—0 2 £—0 2x 70 2 2

N 1— 1 —1+1 —1/2?2 -1 1
. ThlSlImIthBSthefOI’m%. lim grng 2 im + [z 2 [z = = ——
z—1 1+4cosmx  a—1—msinmz -1 —w2cosme  —w2(—1) 2
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SECTION 7.2 PHASE PLOTS, EQUILIBRIA, AND STABILITY U 353

(b) % =g(p)=sp(1—p)=0 = p=0orp=1Alog (p)=s—2sp,0¢(0) =sandg’(l) =s—2s = —s.
Therefore, p = 0 islocally stablewhen s < 0 and p = 1 islocally stable when s > 0.

17. We know that ; isalinear function of 1 — p (frequency of type 2) passing through the points (1 — p, 1) = (0,0) and (1, ),

so the growth rate of type Lisr; = % (1—=p—0)+0=a(l—p). Similarly, r2 isalinear function of p (frequency of
type 1) passing through the points (p, 72) = (0, 0) and (1, 3), so the growth rate of type 2 isr, = %_8 (p—0)+0=pBp.

Thus, the growth of the two bacterial strainsismodelled by d N1 /dt = r1 N1 = (1 — p) N1 and dN2 /dt = ra N2 = BpNos.
Asin Exercise 16a, we have
dp _ N{(Ni+Na) = Ni(N;i+N3)  NiNa—NiN; _ (a(l —p)Ni) N2 — N1 (BpN2)

dt (Nl + N2)2 - (Nl + N2)2 - (Nl n N2)2
_ NiNz (a(l—p)—Bp) N, Ny o
- (N1 + N»)* - (Nl + NQ) (N1 i Nz) [a(1 —p) = Bp]

. Ny M N . B N
- (735 (1- 525 ) e =) — 85 = 1= P et =) — 50
Thisisthe differential equation for the cross-feeding model used in Example 7.

a
a+ B’

18 @ L = g() =0~ pla(l—5) ~ =0 = $=0 ad p=1 ad a(l-p)-BH=0 = j=

(0) ¢'(p) = (1 — 2p)[a(1 — p) — Bp] + p(1 — p)[— — F]
S0g¢'(0)=a>0 = p=_0isanunstableequilibrium
andg'(1) = (-1)(-8)=8>0 = p=1isanunstableequilibrium

= (555) = (- 555) [ras oas )+ (559) (5) o9 057

af R o
=<0 = =
a+ [ P a+p

19. (a) With atype 1 to type 2 per capita mutation rate 1, the rate of change of the two bacteria strains are

__ M@

- Ni(t) + Na(t)

dp _ Ni(Ni+Ns)—Ni(Ni+N3)  NiN;— NiNj _ [(r1—p) Ni] No — N1 (r2Na + 1)

di (N1 + N2)? (N1 + N»)* (N1 + N»)?
:(TI_N_TZ)NlNQ_MNf:(’r'lf,u,sz)( N1 )( Nz )7#( Nl )2
(N1+N2)2 N1+ No Ni+ N» N1+ N»

B Ny Ny Ny 2_ 2
=(r—n 7‘2)<N1+N2> (1 N1+N2> M(N1+N2) =(ri—p—r2)p(l—p)—pup

=(rn—r2)p(1—p) —pp (1 —p) —pp* = (r1 —r2) p(1 — p) — up

islocally stable

le/dt =7r1N1 — /.LNl = (7“1 — /.L) N; and sz/dt = r9No —|—/LN1. SOp(t)

=sp(l—p)—pup wheres=ri —r2

L g@)=sp1-p) - pp=0 = pls1-5)-p=0 = p=0 ad sQU-p-p=0 =

© g =s—2sp—pu = ¢'(0) =s—pu. Sop=0islocaly stablewhen s < p, thatiswhenr; < ra + u. Also,
g (kﬁ) —5—2s (pﬁ) —u=—s+pp=1—islocaly stablewhen s > i, that iswhen r, > 2 + p.
s s s
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CHAPTER7 REVIEW U 403

1L or=r > Lo ar=r-2) = /%:/(1—%)& ifr£0] = Inr|l=t—£+C =

r| = e+ = ke'~**. (Note that r = 0 isalso asolution but it does not satisfy the initial condition.) Since (0) = 5,

5=ke® = k. Thus, r(t) = Bet~t.

. dy sinz dz dy sin x dx
12. (1 ' =(1 Y = —
(L+cosz)y’ = (1+e)sinz = 14+e v 14cosz = /1—!—1/6?! /1+cos;r

eVdy sinx dz vl "o
/1+ey_/1+cosx = Injl+e’|=—-In|l+cosz|+C = In(l+eY)=—-In(l+cosz)+C =

1+ eY — e~ In(14cosx) | eC = eY = ke~ In(l4cosz) _ 1 = Y= 11’1[](367 In(l4cosz) _ 1] sncey(o) _ O,

0=Infke ™2 -1 = " =k(3)-1 = k=4 Thus y(z)=In[de” (T _ 1] Anequivalent form

isy(x) _lni?)—cosx
v\ = 1+cosz’
dn . 365 27t
13. — = f 1 = —si
3 o = C° <365> / / (365) dt [ifn#0] = In|n| 5 Si (365) +C =

[n| = eCe(365/2m)sin(2mt/365) 4y — Ae(365/2m) sin(27t/365) \yhere A = +eC isacongtant. Notethat n = 0 isalso a
solution and this can be included in the family of solutions by alowing A to be zero. Now n(0) = no, S0 A = no. Therefore,

the population size after t daysisn(t) = nge!36°/2™) sin(2mt/365)

14. % :r(cos {%} —at)n = /d—: :r/ <cos {%] —at)dt ifn#0 =
In|n| =r (3265 i Eg;] - %atQ) +C = n= Aer((865/2m sini2mt/365]-at/2) \where A = +¢€ isaconstant. Note
that n = 0 isaso asolution and this can be included in the family of solutions by allowing A to be zero. Now n(0) = ng, SO

A = no. Therefore, the population size after ¢ daysisn(t) = nge"((363/27) sin[2rt/365] —at?/2)

dp / |:if p # 0and ] / dp
15. — =cp(l—p)—mp = —— = [ dt = ——=t+C
(a) ol P /6p(1fp)fmp p#1—m/c p(c—m—cp) '
We can evaluate the integral by writing the partial fraction decomposition of the integrand, provided ¢ # m. This gives
1 A B

— 24 2 & 1=Alc-m-cp)+Bp & 1=(B—Ac)p+A(c—m).Seting
plc=m—cp) p c—m—cp

p=0gvesl = A(c—m),s0 A = 1/(c — m). Equating coefficients of p gives B — Ac = 0,50 B = Ac = ¢/(c — m).

Therefore,/p(c_cfs_cp):/<1/(C; ) cC/_( —c)p)dp c—m/( c—m —cp)dp

1 1
= (In[p| —=Infc—m —cp|) = In
c—m c—m Cc— — Cp
L . . . 1
Continuing to solve the differential equation, we have In P =t+C1 &
c—m c—m —cp
In|—L2 | = (c—=m)t+(c—m)C1 < B | = elemmtte-mOr o
c—m—cp c—m—cp
D = Chel™™ Where Cy = 4elc™™C1 o p=C2(c—m) ele=mt _ C’gce(c*m)tp =
c—m—cp [continued]
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24.

25.

26.

0 CHAPTER 10 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS
x' = T,y) =—xy+y-+ax 0=—2y+y+ax
The equilibriaof thesystem ¢ fi (@) vy must satisfy vy . Thus, the equilibria
Y = falz,y) =2y —ay 0=y(2-=)
ae(i)z =0,9 =0and (ii) £ = 2, § = 2a. The Jacobian matrix of the differential systemis
ofi (xy) 0fi(zy)

—y+a —-z+1 a1 —a -1
J(z,y) = or o — | = J(0,0) = and J (2,2a) = .
Ofa(z,y) Ofa(z,y) —y 2—x 02 —2a 0
ox dy

The eigenvalues of J (0,0) are A1 = a and A2 = 2, so by Theorem 14, equilibrium (i) is unstable. Also, det J (2, 2a) = —2a
and trace J (2, 2a) = —a so the determinant and trace have the same sign if a # 0. Therefore, equilibrium (i) is unstable by

Theorem 16, however, if a = 0 the stability analysisisinconclusive.

= fi(z,y) =az’ +ay —z O=az®+ay—=z
Theequilibriaofthewstem{ fi (@) Y }must%tisfy{ Y

, } The second equation
Yy =fo(zy)=z—y

O=z—y

specifiesthat y = . Subgtituting thisinto thefirst equation givesaz® +az —x =0 = x(az+a — 1) = 0. Thus, the

equilibriaare (i) £ = 0, g = 0 and (ii) = ! ; 4 g= 1= 2 . The Jacobian matrix of the differential systemis
ofi(y) 9fi(z,y)]
o 0 20 —1 a -1 a
J(z,y) = ’ Yool= = J(0,0)= and
of2(z,y)  0Of2(z,y) 1 -1 1 -1
ox oy |
l—a 1—a 1-2a a |
J( ,—): . . . Now det J (0,0) = 1 — e and trace J (0,0) = —2 < 0, so by Theorem 16,
a a —

equilibrium (i) islocally stablewhen a < 1. Also, det J (1 —a L _a) =a—1andtrace J (1 —a L _a) = —2q,50
a a a

a

equilibrium (ii) is locally stablewhen a > 1. Note that the stability analysis isinconclusive for both equilibriawhen a = 1.

dM . 2 10M E . 1 _ . _ .
(a)ﬁffl(M,C)—2C+CM T dtffz(M,C)fl M [@=2,8=1,v=10,6 =1]
. fecromr - 2 o o
The equilibriamust satisfy 1+M . The second equation requiresthat M = 1 and substituting
1-M=0

thisinto the first equation gives2C' + C —5=0 = C = £. Thustheonly equilibriumis M = 1,C = £.

[0f1 (M, C) 8f1 (M,C)

oMM oC
b) J (M, C) =
O TED= o ey o 01,0)
i ac
gon — WALM —10M -y | e som - —0 92
= 1+ M) = (1+ M)
1 0 1 0

23
(©J(1,3) = [ 61 O} = detJ(1,2) =3 > 0andtrace J (1,5) = 2 > 0. Therefore, by Theorem 16, the

equilibrium isunstable.
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708 U CHAPTER12 PROBABILITY

60. (&) Let X beabinomial random variablein which ‘recovered’ istreated asa"success'. Wearetold that p = 1 — 0.6 = 0.4,
and thereare n = 10 patients, so the probability that 8 or more patients would recover (without the drug) is

P(X>8)=P(X=8)+P(X=9)+P (X =10)
= () (04)% (0.6)* + () (0-4)° (0.6)" + (39) (0.4)*° (0.6)°
=45(0.4)% (0.6)> + 10 (0.4)° (0.6) + (0.4)"°
=0.01229

(b) The probability found in part (a) isless than the 0.05 threshold. Thisindicates that without drug interventionit is highly
unlikely for 8 or more patients to recover from the disease. Since 8 out of the 10 drug recipients recovered, the drug
treatment appears to be effective.

61. We can treat the number of NK cells X asabinomia random variable with p = 0.07 and n = 10 assuming that the outcome

of each trial isindependent.

@ P (X =0)= (1) (0.07)° (0.93)"" = (0.93)"" ~ 0.484

(b) P (X =2)= (%) (0.07)* (0.93)® = 45 (0.07)* (0.93)° ~ 0.123

(© P(X<3)=P(0)+P(1)+P(2)+P(3)
= ('9) (0.07)° (0.93)"° + (*%) (0.07)" (0.93)° + (%}) (0.07)* (0.93)° + (%) (0.07)* (0.93)"
= (0.93)" +10(0.07) (0.93)° + 45 (0.07)* (0.93)® + 120 (0.07)* (0.93)"
~ 0.996

62. We can treat the number of GC nucleotides X as abinomial random variable with p = 0.3 and n = 10 assuming that each GC

nucleotide identity isindependent of one another.
@ P (X =3)=("0)(0.3)° (0.7)" = 120(0.3)° (0.7)" ~ 0.2668

(b) P(X >8)=P(X =9)+P (X =10) = (%) (0.3)° (0.7)" + (}7) (0.3)'° (0.7)° = 10(0.3)" (0.7) + (0.3)"* ~
0.00014

63. We can treat the number of GC nucleotides X as abinomia random variable withn = 12 and ¢+ = 3 assuming that each GC

nucleotide identity isindependent of one another.
@p=05 = P(X=3)=(7)(0.5)%(0.5)" =220(0.5)"" ~ 0.0537
b)p=03 = P(X=3)=(Y)(0.3)°(0.7)° =220(0.3)° (0.7)° ~ 0.2397
(c) If the GC content of the virusis p, then using Definition 16 with7 = 3 and n = 12 gives
P(X=3)=({)p* (1 - p)” = 220p* (1 - p)°
(d) The maximum value of P (X = 3) must satisfy di [220p° (1 —p)°] =0 = 220[3p*(1—p)" —9p* (1 —p)®] =0
P
= pPP1-p)°[(1-p)—3p=0 = p*1-p)°[l—-4p|=0 = p=0,1,1. Now, P(X =3) = 0when

p=0andp=1. Also,whenp = 1, P(X = 3) =220 () (1 — 1)° ~ 0.258. Thus, by using the Closed Interval
Method on the domain [0, 1], we have found that the absolute maximum value of P (X = 3) occurswhenp = 1/4.
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