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2 Chapter 0

Problems marked with * are more difficult.

Problems marked with 1 are substantially affected by typos which are included
in the Errata.
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Chapter 1

Solutions to Chapter 1 Exercises

Exercise 1.1. According to the prescription of the text, we assume that the solutions in the
two regions take the form
Uy (x) = Ay sin(kx) + By cos(kx) | (1)
and
\IJQ(.’E) = 1426/im + B26_Nz . (2)

There is no need to write down the solution for ¥5(z), since the complete solution is either
symmetric, in which case the derivative of Uy(z) vanishes at = 0, or antisymmetric, therefore,
Uy () itself vanishes at x = 0.

The boundary conditions of the problem are

b (oo ) co i (e(ca D)) (k0 2)) 0. @

L W b . b b kb
d—; . = d—; . — Ajkcos (k: (—2>> — Biksin (k (—2>> = Agne”g — Bsoke 5 , (5)
- 2 - 2
and finally,
\I/Q(IC:()):O—>A2+BQ:0 (6)
i.e., Ao = —Bs for the antisymmetric case, or
v
di.r2$:0:0*>A2K/782H:0’ (7)

i.e., Ay = By for the symmetric case. Regarding the amplitudes A1, By, A and By as the unknowns,
we get a homogeneous set of four linear equations, which means that in order to have a solution,

Copyright (©2009 Pearson Education, Inc., publishing as Pearson Addison-Wesley.



30 Chapter 1

W1) = |pz)+ |py> + [p2)

[W2) = Ipa) = IPy) — [P2)

|\IJ3> = _|p:1:> + ‘py> - |pz>
)

= —|pz) — Ipy) + [p2)

However, the scalar product of |[¥;) and |¥5) is

(U W) =1—-1—1=—1. 2)

Exercise 1.27. The density of states in the presence of disorder is given by Eq. (1.72), where
we can take D(E—Ey) = /E — Eg, i.e., we can drop the irrelevant constants in front of the square
root. When performing the integral, we need to pay attention to the argument of the square root,
namely, it should not be negative. Therefore, the integral in Eq. (1.72) is to be taken between
—oo and E. This is physically sound, since for energies smaller than the gap, the contribution of
a particular band is zero. Thus the integral we are to calculate is

1 E 2 oA 2
D(E) = ——— dE, \/E — E e (Fa(0)=Es) /28" 1
(B) = —omxg | B VE= e 1)

These densities of states are shown in three representative cases, with E,(0) = 1.5. As it can be
seen in Fig. 1.13, when AE — 0, we recover the well-known 3D result.
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50 Chapter 2

Figure 2.2: Band bending in a p-i-n structure.

Exercise 2.11. By the definition of the density of states, in 1D we have

D(E)E = %dk , (1)

ie.,

m

2

py = Lk _ L (dE)l_ L <h2k>_1 L mh L m

T = = = . . 2
ordE 2w \ dk 21 i2v2mE 27 hW2VE @

Exercise 2.12. In order to calculate the number of particles for the quantum well, we first have
to determine how many quantum levels are occupied, for which we would need the confinement
energies. This is given by

2 2.1075 eV - 5)” x 3.142
=P 2107V g0 =17 T8meV . (1
mL 5.1-105 eV x (10~ cm)

from which we can conclude that only the first, second and third confined levels will be occupied.
The energies of these states are equal to 7.8, 31 and 70 meV, respectively. This means that the
Fermi energies will be 100 meV, 69 meV, and 30 meV, respectively.

Since for a 2D system the density of states is given by

Am
Doa(E) = 575 (2)
the number of particles is equal to
Er A m
N = DE)dE = —=FE 3
[ pwyap= e 3)
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100 Chapter 5

: GL
w(z = L) = 1200 J/em®, C; = 5D Clearly, since the temperature (and thus the energy density)

are kept at the same value at the two ends, the maximum of the temperature distribution will be
at L/2. The temperature is obtained from T'(x) = u(x)/co, i.e.,

G L
— 300 K 3
2chm + 2ch$ + ’ 3)

T(z) =

with the maximum being equal to

L2 L? 2 Sx (1 2
G :3OO+G — 300+ 0 W/em” x (100 cm)

Trae =T (L/2) = 300
v (L/2) +8DCQ 8K 8x1W/(K-cm)

= 25300 K . (4)

This temperature is far beyond the melting point of any material, thus, any real bar would melt,
if it was exposed to such a heat load.
Upon symmetry, the heat flow at the ends of the bar will be equal, so we calculate it at x = 0:
du GL
h(r=0)= —D— =——. 5
(z =0) iz, 5 (5)
The total heat flow at the ends is thus equal to hyor = h(z = 0) + h(z = L) = 2h(z = 0) = GL.
Since the heat flow is defined through unit cross-section, in order to obtain the heat taken out of
the bar we have to multiply this by A. Thus Q,,; = GLA. On the other hand, the total heat
pumped in is Q;, = GV = GLA, hence these two are equal.

t Exercise 5.18. On one hand, the probability of having a collision exactly after time ¢ is
given by P(t)dt, while this can also be expressed as having no collisions for time ¢ as

P(t)dt = (1 - dt>;t @ (1)

T T

The first bracket raised to the power t/dt is nothing but the probability of not having collisions
for a number of t/dt time periods of duration dt. By denoting x = 7/dt, we can re-cast the right

hand side . .
dt\ @ dt INT" dt e dt
T T X T T

from which we conclude that

P(t) = , (3)

which also means that the average time since the last collision is 7, and consequently, the mean
collision time is 27.
1, 2F?%?
On average, one electron loses —mv* =

energy in 27, and in a volume of A - [ we have

m
nA -1 electrons, where n is the electron density. This implies that the average dissipation per unit
time is

F?r (eE)*r ne3r (V)2 Ao V2
l

— [ — — _ 2:7
P =nAl=— = nAl"— = = Al— V= (4)
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200 Chapter 10

thus, the two terms with the ___ cancel each other. The (& - p)(& - ) term can be expanded as
(@-p)(@-p) = (a1p1 + azps + azps)(cipr + azpz + asps)

= Q%P% + a%pi + a§p§ + (10 + asen) p1p2
—_— ————

=0
+ (103 + azay) pips + (a2 + azan) paps
—_— —
-0 -0
= aipt + asp; + a3p; (3)

where we used the anticommutation relation stipulated in Eq. (10.86). Then we are left with
(E + agmc® + cd - p)(E — agmc? — cd - p) = E* — (mc?)? — |cpl? , (4)

as stated.

Exercise 10.16. Let the three momenta be p., pe, P, for the photon, electron and positron,
respectively, and likewise for the energies, I, F, /. The three energies are linked to the momenta
and the masses through the dispersion relations

By = /e M)
Ee = V@2 (o 2)
By = yf(me?)? + 5,0, (3)

where m, is the mass of the electron and positron. The conservation of energy requires
E,=FE.+E,, (4)

or
E2=E2+E.+2E.E,, (5)

which, keeping the relation between momentum and energy in mind, can be expanded as
P = (mec)® + (mec)® + p2 + pp + 2¢/(mec)® + p2y/ (mec)? +p2 . (6)
On the other hand, momentum is conserved in the process, i.e.,
Py =De+Dp, (7)

or
Py = P2+ D+ 20 - Py - (8)
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