
Software Engineering 9 – Solutions Manual

©Ian Sommerville 2010

1

Software Engineering 9

Solutions Manual

IAN SOMMERVILLE

These solutions are made available for instructional purposes only. Neither the
author nor the publisher warrants the correctness of these solutions nor accepts any
liability for their use. Solutions may only be distributed to students and it is a
condition of distribution that they are only distributed by accredited instructors
using ‘Software Engineering, 9thedition’ as a textbook. The solutions may be made
available to students on a password-protected intranet but must not be made
available on a publicly-accessible WWW server.

https://buklibry.com/download/solutions-manual-of-software-engineering-by-sommerville-9th-edition/

Download full file from buklibry.com

Software Engineering 9 – Solutions Manual

©Ian Sommerville 2010

3

Preface

This solutions manual is intended to help teachers of software engineering courses
in marking homework questions for students. Each chapter in the book has 10
exercises of different types, which you may set for students either as is or in a
modified form. I have supplied answers to 50% of the exercises in this manual.

The exercises for which answers have not been supplied are, generally, of
one of three types:

1. Simple exercises whose answers can be found in the text of the chapter.
There are typically one or two of these questions in each chapter and they
are intended to stimulate students to read the chapter.

2. Design problems for which there is a range of solutions and you have to use
your judgment to decide if the solution is appropriate. Supplying a solution
here would imply that there is only one right answer to the question.

3. Ethics-related questions as the aim of these questions is to encourage
students to think about the ethics issues involved. The notion of a right and
wrong answer does not apply in this case as the student’s response to the
question depends both on their cultural background and on their particular
views on a topic. I suggest that these questions should be used to stimulate
class discussions rather than as part of class tests.

It is important when marking the student’s answers to exercises to see the
supplied solutions as a guide only rather than a definitive statement of the only
possible answer to the question. It is generally good educational practice to give
students credit for what they know and if they produce credible answers that reveal
they have thought about the exercise and have some knowledge of the topic, then
this should be rewarded.

This solutions manual may be used in conjunction with the associated quiz
book, which lists short questions and answers for each chapter in the book. These
can be used for short class tests to assess if students have read the material or as
self-assessment tests which the students complete in their own time.

If you think that I have made a mistake in some of these answers (quite
possible), please let me know. In some cases, there are obviously several possible
answers and you may disagree with my solutions. I’d be delighted to consider
including your alternative solutions but I do not have time to engage in detailed
email discussions about the exercises in the book.

Ian Sommerville
January 2010

https://buklibry.com/download/solutions-manual-of-software-engineering-by-sommerville-9th-edition/

Download full file from buklibry.com

 Software Engineering 9 – Solutions Manual Introduction

©Ian Sommerville 2010

30

8 Software Testing

8.2 Explain why testing can only detect the presence of errors, not their
absence.

Assume that exhaustive testing of a program, where every possible valid input is
checked, is impossible (true for all but trivial programs). Test cases either do not
reveal a fault in the program or reveal a program fault. If they reveal a program
fault then they demonstrate the presence of an error. If they do not reveal a fault,
however, this simply means that they have executed a code sequence that – for the
inputs chosen – is not faulty. The next test of the same code sequence – with
different inputs – could reveal a fault.

8.4 You have been asked to test a method called ‘catWhiteSpace’ in a
‘Paragraph’ object that, within the paragraph, replaces sequences of blank
characters with a single blank character. Identify testing partitions for this
example and derive a set of tests for the ‘catWhiteSpace’ method.

Testing partitions are:

 Strings with only single blank characters

 Strings with sequences of blank characters in the middle of the string

 Strings with sequences of blank characters at the beginning/end of string

Examples of tests:

The quick brown fox jumped over the lazy dog (only single blanks)

The quick brown fox jumped over the lazy dog (different numbers of
blanks in the sequence)

The quick brown fox jumped over the lazy dog (1st blank is a sequence)

The quick brown fox jumped over the lazy dog (Last blank is a sequence)

 The quick brown fox jumped over the lazy dog (2 blanks at beginning)

https://buklibry.com/download/solutions-manual-of-software-engineering-by-sommerville-9th-edition/

Download full file from buklibry.com

 Software Engineering 9 – Solutions Manual Introduction

©Ian Sommerville 2010

50

15 Dependability and
Security Assurance

15.1 Explain when it may be cost-effective to use formal specification and
verification in the development of safety-critical software systems. Why do
you think that critical systems engineers are against the use of formal
methods?

Formal methods can be cost-effective in the development of safety-critical software
systems because the costs of system failure are very high and so additional cost in
the development process is justified. Most safety-critical systems have to gain
regulatory approval before they are used and it is a very expensive process to
convince a regulator that a system is safe. The use of a formal specification and
associated correctness argument may be less than the costs e.g. of additional testing
to convince the regulator of the safety of the system.

Some developers of systems are against the use of formal methods because
they are unfamiliar with the technology and unconvinced that a formal
specification can be complete representation of the system. Furthermore, the
problem with formal specifications are that they cannot be understood by system
customers so they may conceal errors and give a false picture of the correctness of
the system.

15.3 Explain why it is practically impossible to validate reliability specifications
when these are expressed in terms of a very small number of failures over
the total lifetime of a system.

To measure reliability you need to have statistically valid failure data for the
system so you need to induce more failures than are specified in the given time
period. However, because the number of failures is so low, this will take an
unrealistically large amount of time.

https://buklibry.com/download/solutions-manual-of-software-engineering-by-sommerville-9th-edition/

Download full file from buklibry.com

 Software Engineering 9 – Solutions Manual Introduction

©Ian Sommerville 2010

90

27.7 Modify the insulin pump schema, shown in Figure 27.10, to add a further
safety condition that the ManualDeliveryButton? can only have a non-zero
value if the pump switch is in the manual position.

To specify that the manual delivery button can only have a non-zero value if the
switch is in the manual position, you should add the following invariant to the state
schema.

switch? ≠ manual ⇒ ManualDeliveryButton = 0

27.8 Write a Z schema called SELF_TEST that tests the hardware components of
the insulin pump and sets the value of the state variable HardwareTest?.
Then modify the RUN schema to check that the hardware is operating
successfully before any insulin is delivered. If not, the dose delivered should
be zero and an error should be indicated on the insulin pump display.

SELF_TEST

Δ INSULIN_PUMP_STATE

(HardwareTest? = OK ∧ Needle? = present ∧ InsulinReservoir? = present ⇒

status’ = running ∧ alarm! = off ∧ display1!= “”) ∨
(
 status’ = error
 alarm! = on
 Needle? = notpresent ⇒ display1! = display1! ∪ “No needle unit” ∨
 (InsulinReservoir? = notpresent ∨ insulin_available < max_single_dose)
 ⇒ display1! = display1! ∪ “No insulin” ∨
 HardwareTest? = batterylow ⇒ display1! = display1! ∪ ”Battery low” ∨
 HardwareTest? = pumpfail ⇒ display1! = display1! ∪ ”Pump failure” ∨
 HardwareTest? = sensorfail ⇒ display1! = display1! ∪ ”Sensor failure” ∨
 HardwareTest? = deliveryfail ⇒ display1! = display1! ∪ ”Needle failure”
)

The RUN schema should be modified to check that HardwareTest? is true before
continuing operation.

https://buklibry.com/download/solutions-manual-of-software-engineering-by-sommerville-9th-edition/

Download full file from buklibry.com

