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1 Laws of Large Numbers

1.1. Basic Definitions

1.1. (i) A andB−A are disjoint with B = A∪(B−A) so P (A)+P (B−A) = P (B)
and rearranging gives the desired result.
(ii) Let A′

n = An ∩ A, B1 = A′
1 and for n > 1, Bn = A′

n − ∪n−1
m=1A

′
m. Since the

Bn are disjoint and have union A we have using (i) and Bm ⊂ Am

P (A) =
∞∑

m=1

P (Bm) ≤
∞∑

m=1

P (Am)

(iii) Let Bn = An − An−1. Then the Bn are disjoint and have ∪∞
m=1Bm = A,

∪n
m=1Bm = An so

P (A) =
∞∑

m=1

P (Bm) = lim
n→∞

n∑

m=1

P (Bm) = lim
n→∞

P (An)

(iv) Ac
n ↑ Ac so (iii) implies P (Ac

n) ↑ P (Ac). Since P (Bc) = 1−P (B) it follows
that P (An) ↓ P (A).

1.2. (i) Suppose A ∈ Fi for all i. Then since each Fi is a σ-field, Ac ∈ Fi for
each i. Suppose A1, A2, . . . is a countable sequence of disjoint sets that are in
Fi for all i. Then since each Fi is a σ-field, A = ∪mAm ∈ Fi for each i.
(ii) We take the interesection of all the σ-fields containing A. The collection of
all subsets of Ω is a σ-field so the collection is not empty.

1.3. It suffices to show that if F is the σ-field generated by (a1, b1)×· · ·×(an, bn),
then F contains (i) the open sets and (ii) all sets of the form A1 ×· · ·An where
Ai ∈ R. For (i) note that if G is open and x ∈ G then there is a set of the
form (a1, b1) × · · · × (an, bn) with ai, bi ∈ Q that contains x and lies in G, so
any open set is a countable union of our basic sets. For (ii) fix A2, . . . , An and
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16 Chapter 1 Laws of Large Numbers

6.5. Pick Nk so that if m,n ≥ Nk then d(Xm, Xn) ≤ 2−k. Given a subsequence
Xn(m) pick mk increasing so that n(mk) ≥ Nk. Using Chebyshev’s inequality
with ϕ(z) = z/(1 + z) we have

P (|Xn(mk) −Xn(mk+1)| > k−2) ≤ (k2 + 1)2−k

The right hand side is summable so the Borel-Cantelli lemma implies that for
large k, we have |Xn(mk) − Xn(mk+1)| ≤ k−2. Since

∑
k k

−2 < ∞ this and
the triangle inequality imply that Xn(mk) converges a.s. to a limit X . To see
that the limit does not depend on the subsequence note that if Xn′(m′

k
) → X ′

then our original assumption implies d(Xn(mk), Xn′(m′
k
)) → 0, and the bounded

convergence theorem implies d(X,X ′) = 0. The desired result now follows from
(6.2).

6.6. Clearly, P (∪m≥nAm) ≥ maxm≥n P (Am). Letting n → ∞ and using (iv)
of (1.1), it follows that P (lim supAm) ≥ lim supP (Am). The result for lim inf
can be proved be imitating the proof of the first result or applying it to Ac

m.

6.7. Using Chebyshev’s inequality we have for large n

P (|Xn −EXn| > δEXn) ≤ var(Xn)
δ2(EXn)2

≤ Bnβ

δ2(a2/2)n2α
= Cnβ−2α

If we let nk = [k2/(2α−β)] + 1 and Tk = Xnk
then the last result says

P (|Tk −ETk| > δETk) ≤ Ck−2

so the Borel Cantelli lemma implies Tk/ETk → 1 almost surely. Since we have
ETk+1/ETk → 1 the rest of the proof is the same as in the proof of (6.8).

6.8. Exercise 4.16 implies that we can subdivide Xn with large λn into several
independent Poissons with mean ≤ 1 so we can suppose without loss of general-
ity that λn ≤ 1. Once we do this and notice that for a Poisson var(Xm) = EXm

the proof is almost the same as that of (6.8).

6.9. The events {`n = 0} = {Xn = 0} are independent and have probability
1/2, so the second Borel Cantelli lemma implies that P (`n = 0 i.o.) = 1. To
prove the other result let r1 = 1 r2 = 2 and rn = rn−1 + [log2 n]. Let An =
{Xm = 1 for rn−1 < m ≤ rn}. P (An) ≥ 1/n, so it follows from the second
Borel Cantelli lemma that P (An i.o.) = 1, and hence `rn ≥ [log2 n] i.o. Since
rn ≤ n log2 n we have

`rn

log2(rn)
≥

[log2 n]
log2 n+ log2 log2 n
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46 Chapter 2 Central Limit Theorems

2.9. Limit Theorems in Rd

9.1.

Fi(x) = P (Xi ≤ x)
lim

n→∞
P (X1 ≤ n, . . . , Xi−1 ≤ n,Xi ≤ x,Xi+1 ≤ n, . . . , Xd ≤ n)

lim
n→∞

F (n, . . . , n, x, n, . . . , n)

where the x is in the ith place and n’s in the others.

9.2. It is clear that F has properties (ii) and (iii). To check (iv) let G(x) =∏d
i=1 Fi(xi) andH(x) =

∏d
i=1 Fi(xi)(1−Fi(xi)). Using the notation introduced

just before (iv)

∑

v

sgn (v)G(v) =
d∏

i=1

Fi(bi) − Fi(ai)

∑

v

sgn (v)H(v) =
d∏

i=1

{Fi(bi)(1 − Fi(bi) − Fi(ai)(1 − Fi(ai)}

To show
∑

v sgn (v)(G(v) + αH(v)) ≥ 0 we note

Fi(bi)(1 − Fi(bi)) − Fi(ai)(1 − Fi(ai))
= {Fi(bi) − Fi(ai)}(1 − Fi(ai))

+ Fi(ai){(1 − Fi(bi)) − (1 − Fi(ai))}
= {1 − Fi(bi) − Fi(ai)}(Fi(bi) − Fi(ai))

and |1 − Fi(bi) − Fi(ai)| ≤ 1.

9.3. Each partial derivative kills one intergal.

9.4. If K is closed, H = {x : xi ∈ K} is closed. So

lim sup
n→∞

P (Xn,i ∈ K) = lim sup
n→∞

P (Xn ∈ H) ≤ P (X ∈ H) = P (Xi ∈ K)

9.5. If X has ch.f. ϕ then the vector Y = (X, . . . , X) has ch.f.

ψ(t) = E exp


i
∑

j

tjX


 = ϕ


∑

j

tj



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96 Chapter 6 Ergodic Theorems

3.5. First note that (3.3) implies ĒT1 = 1/P (X0 = 1), so the right hand side is
P (X0 = 1, T1 ≥ n). To compute the left now we break things down according
to the position of the first 1 to the left of 0 and use translation invariance to
conclude P (T1 = n) is

=
∞∑

m=0

P (X−m = 1, Xj = 0 for j ∈ (−m,n), Xn = 1)

=
∞∑

m=0

P (X0 = 1, Xj = 0 for j ∈ (0,m+ n), Xm+n = 1)

= P (X0 = 1, T1 ≥ n)

6.6. A Subadditive Ergodic Theorem

6.1. (1.3) implies that the stationary sequences in (ii) are ergodic. Exercise 3.1
implies EX0,n =

∑n
m=1 P (S1 6= 0, . . . , Sn 6= 0). Since P (S1 6= 0, . . . , Sn 6= 0) is

decreasing it follows easily that EX0,n/n→ P ( no return to 0 ).

6.2. (a) EL1 = P (X1 = Y1) = 1/2. To compute EL2 let N2 = |{i ≤ 2 :
Xi = Yi} and note that L2 − N2 = 0 unless (X1, X2, Y1, Y2) is (1, 0, 0, 1) or
(0, 1, 1, 0). In these two cases which have probability 1/16 each L2 −N2 = 1 so
EL2 = EN2 + 1/8 = 9/8 so EL2/2 = 9/16
(b) The expected number of sequences of length K is

(
n
K

)22−K . Taking K = an

using Stirling’s formula m! ∼ mme−m
√

2πm without the term under the square
root we have that the above

≈ n2n2−an

(an)2an((1 − a)n)2(1−a)n
= (a2a(1 − a)2(1−a)2a)−n

From the last computation it follows that

1
n

log

((
n

na

)2

2−na

)
→ −2a loga− 2(1 − a) log(1 − a) − a log 2

When a = 1 the right hand side is − log 2 < 0. By continuity it is also negative
for a close to 1.
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