Solutions Manual to Accompany

 ORDINARY DIFFERENTIAL EQUATIONSMICHAELD. GREENBERG

(8)WILEY

Contents

Page
Chapter 1 First-Order Differential Equations 1
2 Higher-Order Linear Equations 34
3 Applications of Higher-Order Equations 56
4 Systems of Linear Differential Equations 70
5 Laplace Transform 107
6 Series Solutions 127
7 Systems of Nonlinear Differential Equations 148
CAS Tutorial 167

1. Maple 167
2. MATLAB 172
3. Mathematica 176
4. Maple for this Text, by Chapter 180

$$
y_{2}(x)=x^{2} \int \frac{e^{-\int(-3 / x) d x}}{x^{4}} \mathrm{~d} x=x^{2} \int \frac{e^{3 \ln x}}{x^{4}} \mathrm{~d} x=x^{2} \int \frac{x^{3}}{x^{4}} \mathrm{~d} x=\boldsymbol{x}^{\mathbf{2}} \ln \boldsymbol{x}
$$

Now re-work the problem using the method instead. Since $y_{1}(x)=x^{2}$, seek a second solution in the form $y(x)=C(x) x^{2}$. Substituting that in the DE gives

$$
x^{2}\left(C^{\prime \prime}+4 x C^{\prime}+2 C\right)-3 x\left(C^{\prime} x^{2}+2 x C\right)+4\left(C x^{2}\right)=0
$$

which simplifies to $x C^{\prime \prime}+C^{\prime}=0$. We could set $C^{\prime}=v$ to reduce the order of the latter, but it is easier to notice that it can be written as $\left(x C^{\prime}\right)^{\prime}=0$. which gives $x C^{\prime}=A$ and $C(x)=A \ln x+B$. Thus, we have found $y(x)=(B+A \ln x) x^{2}$. Take $B=0$ because that term gives the solution $y_{1}(x)=x^{2}$ that was given. Thus, we have found $y_{2}(x)=\boldsymbol{x}^{\mathbf{2}} \ln \boldsymbol{x}$ again.

$$
\begin{aligned}
& x^{\prime}=2 x+2 z, \\
& y^{\prime}=x+y+2 z, \\
& z^{\prime}=x+3 z .
\end{aligned}
$$

SOLUTION. $\boldsymbol{A}=\left[\begin{array}{ccc}2 & 0 & 2 \\ 1 & 1 & 2 \\ 1 & 0 & 3\end{array}\right]$ gives $\lambda_{1}=1, \boldsymbol{e}_{1}=\alpha\left[\begin{array}{c}0 \\ 1 \\ 0\end{array}\right]+\beta\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right] ; \lambda_{2}=4, \boldsymbol{e}_{2}=\gamma\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] ;$
so a general solution is

$$
\boldsymbol{x}(t)=c_{1}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] e^{t}+c_{2}\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right] e^{t}+c_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] e^{4 t}
$$

Example 2. (Defective eigenvalues) Obtain a general solution of the system

$$
\begin{aligned}
& x^{\prime}=2 x+4 y \\
& y^{\prime}=-x+6 y
\end{aligned}
$$

We find that the matrix $\boldsymbol{A}=\left[\begin{array}{cc}2 & 4 \\ -1 & 6\end{array}\right]$ gives $\lambda=4,4$ with only the one-dimensional eigenspace $\boldsymbol{e}=\alpha\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Thus, seeking solutions in the form $\boldsymbol{x}(t)=q e^{r t}$ comes up short, giving only

$$
\boldsymbol{x}(t)=c_{1}\left[\begin{array}{l}
2 \tag{A}\\
1
\end{array}\right] e^{4 t}+c_{2} \times ?
$$

Since the defect is 1 (that is, the multiplicity 2 of the eigenvalue minus the dimension 1 of the eigenspace), seek $\boldsymbol{x}(t)$ in the modified form

$$
\begin{equation*}
\boldsymbol{x}(t)=(\boldsymbol{q}+\boldsymbol{p} t) e^{4 t} \tag{B}
\end{equation*}
$$

Putting (B) into $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$ gives

$$
\begin{equation*}
4 \boldsymbol{q} e^{4 t}+\boldsymbol{p} e^{4 t}+4 \boldsymbol{p} t e^{4 t}=\boldsymbol{A} \boldsymbol{q} e^{4 t}+\boldsymbol{A} \boldsymbol{p} t e^{4 t} . \tag{C}
\end{equation*}
$$

Cancel the exponentials and then use the linear independence of 1 and t to match their coefficients on the two sides of equation (C):

$$
\begin{align*}
& t: \boldsymbol{A p}=4 \boldsymbol{p} \tag{D}\\
& 1: \boldsymbol{A} \boldsymbol{q}=4 \boldsymbol{q}+\boldsymbol{p} \tag{E}
\end{align*}
$$

(D) is the eigenvalue problem for the matrix \boldsymbol{A}, with eigenvalue 4, that we've already solved, above, so \boldsymbol{p} is the already-found eigenvector, $\boldsymbol{p}=\alpha\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Next, put that \boldsymbol{p} into (E), which becomes

Chapter 6

$$
\begin{equation*}
y(x)=x^{r} \sum_{0}^{\infty} a_{n} x^{n}=\sum_{0}^{\infty} a_{n} x^{n} \tag{2}
\end{equation*}
$$

will lead to one solution, $y_{1}(x)$; then, text equation (18b) will give a second LI solution $y_{2}(x)$. First find $y_{1}(x)$: Putting (2) into (1) gives

$$
\sum_{2}^{\infty} a_{n} n(n-1) x^{n-1}+\sum_{1}^{\infty} a_{n} n x^{n-1}-\sum_{0}^{\infty} a_{n} x^{n+1}=0 .
$$

To get the exponents the same, set $n-1=k$ in the first and second sums, and $n+1=k$ in the third, so

$$
\sum_{1}^{\infty} a_{k+1}(k+1) k x^{k}+\sum_{0}^{\infty} a_{k+1}(k+1) x^{k}-\sum_{1}^{\infty} a_{k-1} x^{k}=0
$$

Now to get the same summation limits, we can change the lower limit in the first sum to 0 without harm because the k factor is zero at $k=0$ anyhow; and we can change the lower limit in the third sum to 0 with the understanding that $a_{-1} \equiv 0$. Thus,

$$
\sum_{0}^{\infty}\left[a_{k+1}(k+1)^{2}-a_{k-1}\right] x^{k}=0
$$

The latter gives the recursion formula as $a_{k+1}(k+1)^{2}-a_{k-1}=0$, or

$$
\begin{equation*}
a_{k+1}=\frac{a_{k-1}}{(k+1)^{2}} \text { for } k=0,1,2, \ldots \tag{3}
\end{equation*}
$$

with $a_{-1} \equiv 0$. Putting $k=0,1,2, \ldots$ in (3), gives $a_{1}=0, a_{2}=\frac{1}{4} a_{0}, a_{3}=0, a_{4}=\frac{1}{16} a_{2}=\frac{1}{64} a_{0}$, and so on, with a_{0} remaining arbitrary. Thus,

$$
\begin{align*}
y_{1}(x)=\sum_{0}^{\infty} a_{n} x^{n} & =a_{0}+\frac{1}{4} a_{0} x^{2}+\frac{1}{64} a_{0} x^{4}+\cdots \\
& =1+\frac{1}{4} x^{2}+\frac{1}{64} x^{4}+\cdots \tag{4}
\end{align*}
$$

in which we've taken $a_{0}=1$.
Next, according to (18b) in the text, seek a second solution in the form

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln x+\sum_{1}^{\infty} c_{n} x^{n} \tag{5}
\end{equation*}
$$

[Note that the lower summation limit in (5) is 1 , not 0 .] Differentiate (5) twice, to put it into (1):

$$
\begin{gathered}
y_{2}^{\prime}(x)=y_{1}^{\prime}(x) \ln x+\frac{1}{x} y_{1}(x)+\sum_{1}^{\infty} n c_{n} x^{n-1} \\
y_{2}^{\prime \prime}(x)=y_{1}^{\prime \prime}(x) \ln x+\frac{2}{x} y_{1}^{\prime}(x)-\frac{1}{x^{2}} y_{1}(x)+\sum_{2}^{\infty} n(n-1) c_{n} x^{n-2},
\end{gathered}
$$

and putting these into (1) gives
continuous on I. Thus, we must be able to test a solution set $\left\{\boldsymbol{x}_{1}(t), \ldots, \boldsymbol{x}_{n}(t)\right\}$ to see if it is LI. It is LI on I if and only if

$$
\begin{equation*}
\operatorname{det}\left[x_{1}(t), \ldots, x_{n}(t)\right] \neq 0 \tag{14}
\end{equation*}
$$

for all t in I. We can evaluate the determinant in (14), above, using the Maple Determinant command within the LinearAlgebra package. To illustrate, let us verify that the two vector solutions given in Example 2 of Section 4.5 are LI on the interval $t>0$. To test them, make those vectors the columns of a 2×2 matrix and evaluate its determinant (first by hand) as

$$
\operatorname{det}\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right]=\left|\begin{array}{cc}
e^{t} & e^{2 t} \tag{15}\\
-3 e^{t} & -2 e^{2 t}
\end{array}\right|=e^{t} e^{2 t}\left|\begin{array}{cc}
1 & 1 \\
-3 & -2
\end{array}\right|=e^{3 t},
$$

and since the latter is nonzero on the interval I, the two vector solutions are indeed LI on I. In this case, hand calculation sufficed because the determinant was only 2×2, but for larger determinants it is generally more convenient to use Maple. To illustrate, the Maple commands for the evaluation of the determinant given above are these:

$$
\begin{gathered}
>\text { with(LinearAlgebra): } \\
>\mathrm{B}:=\operatorname{Matrix}\left(\left[\left[\exp (\mathrm{t}), \exp \left(2^{*} \mathrm{t}\right)\right],\left[-3 * \exp (\mathrm{t}),-2^{*} \exp \left(2^{*} \mathrm{t}\right)\right]\right]\right) \\
>\text { Determinant }(\mathrm{B})
\end{gathered}
$$

which gives the same result, $e^{3 t}$. Remember that you can suppress printing, following a command, by using a colon at the end of the command, but it is good to not do that at first, here for the B matrix, until it prints, so we have a chance to check it for typographical errors. If it looks okay, then you can put the colon at the end and rerun that command, to suppress the printing so your work is more compact, if you wish. Note, as above, the format: Matrix([[first row], ... ,[last row]]).

Section 4.6. The Eigenvectors command, also within LinearAlgebra, gives both the eigenvalues and eigenvectors of a matrix. For instance, let

$$
\mathbf{A}=\left[\begin{array}{ll}
3 & 4 \tag{16}\\
2 & 1
\end{array}\right]
$$

The commands
$>$ with(LinearAlgebra):
$>$ A: $=$ Matrix $([[3,4],[2,1]])$
$>$ Eigenvectors(A)
give as output a column vector followed by a matrix: $\left[\begin{array}{c}-1 \\ 5\end{array}\right],\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right]$. The elements of the column vector are the eigenvalues, and the columns of the matrix are corresponding eigenvectors. In this

