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Solutions for Chapter 1 

1.1. (a) i(t) 1000 - (900 + lOt) = 100 - lOt, 1(0) = 1000 

Integration gives I(t) = 1000 + lOOt - 5t2• 

Since 1(10) = 1,500 > I. = 800, and since m1n 

I(t) ~ 0 for 0 ~ t ~ 10, the control P(t) = 1000 € 

[600,1200] is feasible. 

J = r~O - [10I(t) + 20P(t)]dt 

r10 _ [10,000 + 1000t - 50t2 + 20,000]dt o 
= -333,333. 

(b) I(t) 800 - (900 + lOt) -100 - lOt, 1(0) 1000 

I(t) 1000 - lOOt - 5t2 

(c) 

1.2. G(t) 

G(O) 

1(10) = -500 < I. = 800, so that the terminal m1n 

constraint is violated. 

I(t) 

and 

{
600 -(900 + lOt) = -300 -

1200 -(900 + lOt) = 300 -

1(0) = 1000. Integrating 

lOt for 0 < t < 6 

lOt for 6 < t < 10 

= { 1000 - 300t - 5t2 

-2600 + 300t - 5t2 

for 0 < t < 6 
I(t) 

for 6 < t < 10 

Since 1(6) = -980 < 0, the state constraint I(t) ~ 0 

is violated. 

.8 -(.05)G(t) 

.8 -(.05)(16) = 0 

=> G(t) = 0 for all t => G(t) 16 for all t. 



(b) 
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The new Lagrangian replacing (4.17) is 

L = H + ~X + vy + nl(u + U2) + n2(Ul - u), where 

with additional complementary slackness conditions 

nl(u + U2) 

n2 (Ul - u) 
° 
° 

When 0; > 0, we decompose u = ul - u2 as in 

The 

The 

control constraints are 

° s: u 1 
s:u 

1 
and ° s: u 2 

s: U2 

Lagrangian can be formulated as 

L (Al+~)[rlx-d+Ul-u2-0;(ul+U2)] 

+ (A2+v)[r2y-ul +u2] + nl ul + Sl(Ul-ul ) 

+ n2u2 + S2(U2-u2) • 

(4.9) • 

The additional complementary slackness conditions are 

nl ~ 0, nl ul 

n2 ~ 0, n2u2 

0, 

0, 

SI(UI-uI ) 

S2(U2-u2) 

° 
0. 

4.3. At 0; = 0, the optimal policy is to impulse-sell all the 

securities at t = 5. Because of the substantial differ-

ence in earnings between cash and securities in the interval 

(5,10], the above policy should continue to be optimal for 

small values of 0;. At a sufficiently high value of 0;, 



7.9. 
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L x -2(x-2) + 21. - 2llX = 0 

L -2(y-2) A -2llY + v 0 y 

along with (7.22)-(7.25) and 2x y. 

Case l. II > 0, v = 0; then 2 
x + y 

2 
1, 2x = y give 

1 2 
x = VS' y = VS Solving L x = 0 and L = 0 for 

y 

> 0; 1 2 
II gives II so (VS' rs satisfies the K-T 

conditions. 

Case 2. II = 0, v = o. Solving Lx = 0, L = 0 and 
y 

2x = y gixes x = 6/5 > 1, which is infeasible. 

Case 3. II 0, v > 0; then y = 0 and x = O. But 

then A = -2 and v -6, a contradiction. 

Case 4. > 0, O· then 0 and 
2 2 1 II v > , y = x + Y 

so that x = 1 which contradicts 2x = y. 

Conclusion: 1 2 
(VS' rs) is the closest point. 

We set up the equations for all three parts using 

h = x + kyo 

L = x + ky + A[(2-y) 3 2 
- x ] + llY (1) 

L 1 2Ax = 0 (2) x 
2 

(3) L k 31. (2-y) + II = 0 
Y 

A 20, A[(2-y) 3 x2] 0 (4) 

II 20, llY = 0 (5) 

From (2) and (4) , A > 0 always; also x + 0 and 

2 3 x (2-y) . 


