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A Note from the Author

This manual provides solutions to the end-of-chapter problems for the author’s Modern
Electrodynamics. The chance that all these solutions are correct is zero. Therefore, I will be
pleased to hear from readers who discover errors. I will also be pleased to hear from readers
who can provide a better solution to this or that problem than I was able to construct. I
urge readers to suggest that this or that problem should not appear in a future edition of
the book and (equally) to propose problems (and solutions) they believe should appear in a
future edition.

At a fairly advanced stage in the writing of this book, I decided that a source should be
cited for every end-of-chapter problem in the book. Unfortunately, I had by that time spent
a decade accumulating problems from various places without always carefully noting the
source. For that reason, I encourage readers to contact me if they recognize a problem of their
own invention or if they can identify the (original) source of any particular problem in the
manual. An interesting issue arises with problems I found on instructor or course websites
which were taken down after the course they serviced had concluded. My solution has been
to cite the source of these problems as a “public communication” between myself and the
course instructor. This contrasts with problems cited as a true “private communication”
between myself and an individual.
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Chapter 1 Mathematical Preliminaries

Chapter 1: Mathematical Preliminaries

1.1 Levi-Cività Practice I

(a) ε123 = ê1 · (ê2 × ê3) = ê1 · ê1 = 1. The cyclic property of the triple scalar product
guarantees that ε231 = ε312 = 1 also. Similarly, ε132 = ê1 · (ê3 × ê2) = −ê1 · ê1 = −1
with ε321 = ε213 = −1 also. Finally, ε122 = ê1 · (ê2 × ê2) = 0 and similarly whenever
two indices are equal.

(b) Expand the determinant by minors to get

a × b = ê1(a2b3 − a3b2) − ê2(a1b3 − a3b1) + ê3(a1b2 − a2b1).

Using the Levi-Cività symbol to supply the signs, this is the same as the suggested
identity because

a × b = ε123 ê1a2b3 + ε132 ê1a3b2

+ ε213 ê2a1b3 + ε231 ê2a3b1

+ ε312 ê3a1b2 + ε321 ê3a2b1 .

(c) To get a non-zero contribution to the sum, the index i must be different from the unequal
indices j and k, and also different from the unequal indices s and t. Therefore, the
pair (i, j) and the pair (s, t) are the same pair of different indices. There are only
two ways to do this. If i = s and j = t, the ε terms are identical and their square
is 1. This is the first term in the proposed identity. The other possibility introduces
a transposition of two indices in one of the epsilon factors compared to the previous
case. This generates an overall minus sign and thus the second term in the identity.

(d) The scalar of interest is S = L̂m am L̂pbp − L̂q bq L̂sas . Using the given commutation
relation,

S = am bpL̂m L̂p − apbm L̂m L̂p

= am bpL̂m L̂p − am bpL̂p L̂m

= am bp [L̂m , L̂p ]

= ih̄εmpiL̂iam bp

= ih̄L̂iεimpam bp

= ih̄L̂ · (a × b).
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Chapter 4 Electric Multipoles

dq

–dq

r

δ

We will take the limit δ → 0 presently so it is appropriate to perform a Taylor expansion
to get

dW = ϕ(r)dq − [ϕ(r) + δ · ∇ϕ(r)]dq = −δq · ∇ϕ(r).

From the figure, it is consistent to define dp = −δdq in the limit when dq → ∞ and δ → 0
such that their product remains finite. Therefore, because E = −∇ϕ, we get the desired
result,

dW = −E(r) · dp.

Source: A.M. Portis, Electromagnetic Fields (Wiley, New York, 1978).

4.7 Dipoles at the Vertices of Platonic Solids

The electric field of a point dipole is

E(r) =
1

4πε0

[
3n̂(n̂ · p) − p

|r − r0 |3
− 4π

3
p δ(r − r0)

]
,

where n̂ = (r − r0)/|r − r0 |. The delta function has no effect since we are interested in the
field E(0) at the center of each polyhedron. Also, n̂ = r̂0 at this observation point.

(a) The positions r0 of the dipoles for the octahedron on the far left can be taken to be
±ax̂, ±aŷ, and ±aẑ. Therefore, r0 = a and n̂ takes the values ±ax̂, ±aŷ, and ±aẑ
when we sum over dipoles. Hence, the total field at the origin is

E(0) =
1

4πε

1
a3 [−6p + 3x̂px + 3(−x̂)(−px) + 3ŷpy + 3(−ŷ)(−py ) + 3ẑpz + 3(−ẑ)(−pz )]

= 0.

(b) The positions r0 of the dipoles for the tetrahedron in the middle are a(x̂ + ŷ + ẑ),
a(−x̂ − ŷ + ẑ), a(−x̂ + ŷ − ẑ), and a(x̂ − ŷ − ẑ). Therefore, r0 =

√
3a and n̂ takes

the values (x̂ + ŷ + ẑ)/
√

3, (−x̂ − ŷ + ẑ)/
√

3, (−x̂ + ŷ − ẑ)/
√

3, and (x̂ − ŷ − ẑ)
√

3.
Hence, the total field at the origin is

E(0) =
1

4πε0

1
3a3 [−4p + (x̂ + ŷ + ẑ)(px + py + pz ) + (−x̂ − ŷ + ẑ)(−px − py + pz )]

+
1

4πε0

1
3a3 [(−x̂ + ŷ − ẑ)(−px + py − pz ) + (x̂ − ŷ − ẑ)(px − py − pz )]

= 0.

(c) The eight dipoles at the corners of the cube are the superposition of two tetrahedra with
dipoles at their corners rotated by 90◦ with respect to one another. From part (b),
each tetrahedron contributes zero to the electric field at the center. Hence, E(0) = 0
for this case also.
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Chapter 6 Dielectric Matter

Therefore,

Eout − Ein =
σP

ε0
n̂ =

n̂ · P
ε0

n̂.

Using dS = dSn̂ and restoring the free charge gives the final result:

F =
∫

d3r [ρf (r) + P(r) · ∇ ]E(r) +
1

2ε0

∫
dS [n̂(rS ) · P(rS )]2 .

6.25 Minimizing the Total Energy Functional

Using the hint, we seek a minimum of the functional

F [D ] =
1
2

∫
V

d3r
|D |2

ε
−
∫
V

d3r ϕ(r)(∇ · D − ρf ).

The factor of 1
2 and the minus sign are inserted for convenience. Operationally, we compute

δF = F [D + δD ] − F [D ] and look for the conditions that make δF = 0 to first order in
δD . This extremum is a minimum if δF > 0 to second order in δD .

The first step is to integrate by parts to get

F [D ] =
1
2

∫
V

d3r
|D |2

ε
+
∫
V

d3r [D · ∇ϕ + ρf ϕ] −
∫
S

dS · D ϕ.

A direct calculation of δF to first order in δD gives

δF =
∫
V

d3r

[
D
ε

+ ∇ϕ

]
· δD −

∫
S

dS · δDϕ.

Finally, since the variation δD is arbitrary, δF vanishes if D(r) = −ε∇ϕ(r) and n̂·δD|S = 0.
The second of these is true if we specify the normal component of D on the boundary surface.
The first implies that ∇×D = 0. Together with the divergence constraint, this guarantees
that D and E = −∇ϕ satisfy Maxwell’s electrostatic equations. The second-order term in
the variation of F [D] is 1

2

∫
d3r |δD |2

/
ε. This is a positive quantity, so the extremum we

have found does indeed correspond to a minimum of the total electrostatic energy.
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Chapter 11 Magnetic Multipoles

Chapter 11: Magnetic Multipoles

11.1 Magnetic Dipole Moment Practice

We will find the current using ∇× (∇× A) = µ0j. First,

B = ∇× A =
µ0A0

4π

[
r̂
2 cos θ

r2 + θ̂
λ sin θ

r

]
exp(−λr).

Therefore,

j =
1
µ0

∇× B = φ̂4πA0 sin θ

{
2
r3 − λ2

r

}
exp(−λr).

The associated magnetic moment is

m = 1
2

∫
d3r r × j = −A0

8π

∫
d3r θ̂ r sin θ

{
2
r3 − λ2

r

}
exp(−λr).

But θ̂ = x̂ cos θ cos φ+ ŷ cos θ sin φ− ẑ sin θ. This shows that only the ẑ-component survives
the integration. Hence,

m = ẑ
A0

4

∫ π

0
dθ sin2 θ

∫ ∞

0
drr3 exp(−λr)

{
2
r3 − λ2

r

}

= ẑ
πA0

8

{
2 − λ2 d2

dλ2

}∫ ∞

0
dr exp(−λr)

= 0.

11.2 Origin Independence of Magnetic Multipole Moments

(a) If we shift the origin by a vector d, the new magnetic moment is

m′ =
∫

d3r (r − d) × j = m − d ×
∫

d3r j = m.

The last equality above is true by conservation of charge. In the language of current
loops, ∫

d3r j = I

∮
ds = 0.

(b) Similarly, m
′(2)
ij =

1
3

∫
d3r [(r − d) × j]i(r − d)j . Writing out the four terms gives

m
′(2)
ij =

1
3

∫
d3r (r×j)irj −

1
3

∫
d3r (r×j)idj −

1
3

∫
d3r (d×j)irj +

1
3

∫
d3r (d×j)idj .
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Chapter 15 General Electromagnetic Fields

ρ(r, t) =
∑

k

qk δ(r − rk ).

Therefore, ∫
d3r ρA⊥ =

∑
k

qkA⊥(rk , t),

and we conclude that

PEM =
∑

k

qkA⊥(rk , t) + ε0

∫
d3rE⊥ × B.

Source: M.G.Calkin, American Journal of Physics 34, 921 (1966).

15.21 Hidden Momentum in a Bar Magnet?

(a) For a permanent magnet, B = µ0(M + H) and H = −∇ψ, where ψ is the magnetic
scalar potential. Therefore,

PEM = ε0

∫
d3r E × B =

1
c2

∫
d3r E × (M −∇ψ).

The ∇ψ term is zero because integration by parts produces a factor of ∇× E in the
integrand. This is zero because the point charge is at rest. Therefore,

PEM =
1
c2

∫
d3r E × M.

(b) The center-of-energy theorem surely demands Ptot = 0 for this situation. If so, some
hidden momentum to cancel PEM is required. However, there are no “moving parts”.
The magnetic moment due to spin is a relativistic effect, but its origin is quantum-
mechanical, rather than classical.

15.22 LEM for a Charge in a Two-Dimensional Magnetic Field

LEM = ε0

∫
d3r r × (E × B) = ε0

∫
d3r [E(r · B) − B(r · E)] .

We have B = B(x, y)ẑ and

E =
q

4πε0

xx̂ + yŷ + zẑ
r3 .

Therefore,
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Chapter 22 Special Relativity

mode does not generate a longitudinal magnetic field. The TE/TM classification is a Lorentz
invariant concept.

Source: M. Aalund and G. Johannsen, Journal of Applied Physics 42, 2669 (1971).

22.20 Stellar Aberration

The geometry is

K

vθ θ′

K′ ω′, k′ω, k

The transformation law for the four-vector �k is

k⊥ = k′
⊥

k‖ = γ(k′
‖ + βk′

0)

k4 = γ(k′
4 + β · k′

‖).

Therefore,

k‖ = γ(k′
‖ + vω′/c2) and k⊥ = k′

⊥.

It is most convenient to compute the inverse. Using ω′ = ck′,

cot θ =
k‖
k⊥

=
γk′

‖ + γvck′/c2

k′
⊥

= γ cot θ′ +
γvk′

ck′ sin θ′
= γ

(
cos θ′

sin θ′
+

β

sin θ′

)
.

Therefore,

tan θ =
sin θ′

γ(cos θ′ + β)
.

22.21 Reflection from a Rotating Mirror

The frequency ω and wave vector k of a monochromatic plane wave form a four-vector.
Therefore, if the inertial frame S′ moves with velocity v with respect to the (lab) frame S,

ω′ = γ(ω − v · k)

k′
‖ = γ(k‖ − vω/c2)

k′
⊥ = k⊥.

Our strategy is to (i) transform to the mirror frame; (ii) apply Snell’s law of reflection; (iii)
transform back to the lab frame. However, v lies in the plane of the mirror so k⊥ is the
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