
Instructorʼs Solutions Manual
to accompany

AN INTRODUCTION TO

Thermal Physics
Daniel V. Schroeder

https://buklibry.com/download/solutions-manual-of-thermal-physics-by-schroeder-1st-edition/

Download full file from buklibry.com



Copyright © 2001, 2016 Pearson Education, Inc.

All rights reserved.  This publication is protected by copyright.  
No portion of this material may be reproduced, in any form or 
by any means, without permission in writing from the publisher.

ISBN 0-201-65680-9

https://buklibry.com/download/solutions-manual-of-thermal-physics-by-schroeder-1st-edition/

Download full file from buklibry.com



Contents

Chapter 1 Energy in Thermal Physics . . . . . . . . . . . . . . . . . . 1

Chapter 2 The Second Law . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3 Interactions and Implications . . . . . . . . . . . . . . . . . 59

Chapter 4 Engines and Refrigerators . . . . . . . . . . . . . . . . . . 82

Chapter 5 Free Energy and Chemical Thermodynamics . . . . . . . . 104

Chapter 6 Boltzmann Statistics . . . . . . . . . . . . . . . . . . . . 169

Chapter 7 Quantum Statistics . . . . . . . . . . . . . . . . . . . . . 202

Chapter 8 Systems of Interacting Particles . . . . . . . . . . . . . . 284

Appendix A Elements of Quantum Mechanics . . . . . . . . . . . . . 320

Appendix B Mathematical Results . . . . . . . . . . . . . . . . . . 333

iii

https://buklibry.com/download/solutions-manual-of-thermal-physics-by-schroeder-1st-edition/

Download full file from buklibry.com



1 Energy in Thermal Physics
c�2001, 2016 Pearson Education, Inc. All rights reserved. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.

Problem 1.1. (Fahrenheit temperature scale.)
(a) To take Celsius to Fahrenheit, we want a linear function that takes 0 to 32 and 100

to 212. Imagining a graph of this function, the vertical intercept must be 32 and the
slope must be (212� 32)/(100� 0) = 9/5; therefore the function is

(T in �F) =
9
5
(T in �C) + 32.

Inverting this function is now just a matter of algebra:

(T in �C) =
5
9
[(T in �F)� 32].

(b) Plugging �273.15�C into the first formula gives the value �459.7 for absolute zero in
degrees Fahrenheit.

Problem 1.2. To convert from Fahrenheit to Rankine, you would simply add 460, which
raises the value of absolute zero (see the previous problem) to zero as desired. Rankine
and kelvin temperatures are both measured from the same zero-point, so the conversion
between them is just the factor of 9/5 found in the previous problem, with no constant
term added. A kelvin degree is bigger than a Rankine degree, so the conversion is

(T in �R) =
9
5
(T in K),

which is equivalent to
1�R =

5
9

K.

Room temperature, about 300 K, would therefore be 9
5
· 300 = 540 on the Rankine scale.

Problem 1.3. (Kelvin temperature examples.)
(a) Human body temperature is “o�cially” 37�C, or 310 K. (In the U.S., this o�cial

temperature is traditionally converted to 98.6�F—a classic example of failing to round
o↵ insignificant digits.)

(b) Water is supposed to boil at 100�C, so that would be 373 K.
(c) I remember a night in Minnesota when the temperature was reported as �29�F. That

converts to �34�C, which is 239 K.
(d) �196�C would be 77 K, so liquid nitrogen is about four times closer to absolute zero

than room temperature is.
(e) 327�C would be 600 K, to three significant figures.
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96 Chapter 4 Engines and Refrigerators

Problem 4.24. (E↵ect of temperatures and pressures on Rankine cycle e�ciencies.)
(a) Lowering the maximum temperature to 500�C reduces the enthalpy at point 3 to

3081 kJ (per kilogram) and the entropy to 5.791 kJ/K. To find the fraction x of liquid
water at point 4, set this entropy equal to the sum of the liquid and gas components:

5.791 = x(0.297) + (1� x)(8.667) ) x = 0.344.

The enthalpy at point 4 is therefore

H4 = (0.344)(84 kJ) + (0.656)(2538 kJ) = 1695 kJ.

Thus the e�ciency is

e ⇡ 1� H4 �H1

H3 �H1
= 1� 1695� 84

3081� 84
= 0.46.

As expected, a lower maximum temperature gives a lower e�ciency. However, the
reduction from when Th = 600�C is quite small, only 2% out of 48%.

(b) Lowering the maximum pressure to 100 bar increases the enthalpy at point 3 to 3625 kJ
(per kilogram) and the entropy to 6.903 kJ/K. To find the fraction x of liquid water
at point 4, set this entropy equal to the sum of the liquid and gas components:

6.903 = x(0.297) + (1� x)(8.667) ) x = 0.211.

The enthalpy at point 4 is therefore

H4 = (0.211)(84 kJ) + (0.789)(2538 kJ) = 2021 kJ.

Thus the e�ciency is

e ⇡ 1� H4 �H1

H3 �H1
= 1� 2021� 84

3625� 84
= 0.45.

Again, the e�ciency is slightly less. This time, however, the reason is less clear,
because the extreme temperatures are the same as before. Apparently, less of the heat
transfer occurs at temperatures near the extremes, since the boiling occurs at a lower
temperature and there is more steam exiting the turbine.

(c) Lowering the minimum temperature to 10�C reduces H1 to 42 kJ (per kilogram). Point
3 is the same as in the example in the text, but we must redo the calculation of the
fraction of liquid at point :

6.233 = x(0.151) + (1� x)(8.901) ) x = 0.305.

The enthalpy at point 4 is therefore

H4 = (0.305)(42 kJ) + (0.695)(2520 kJ) = 1764 kJ,

and so the e�ciency is

e ⇡ 1� H4 �H1

H3 �H1
= 1� 1764� 42

3444� 42
= 0.49.

Since we’ve widened the range of temperatures, the e�ciency increases, as expected.
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146 Chapter 5 Free Energy and Chemical Thermodynamics

Problem 5.56. Starting from equation 5.60, we have

d

dx
�Smixing = �R

h
lnx + x · 1

x
+ (�1) ln(1� x)� (1� x) · 1

1� x

i
= �R

⇥
lnx� ln(1� x)

⇤
.

The first term in this expression goes to 1 as x! 0, while the second term goes to 1 as
x! 1.

Problem 5.57. I created an Excel spreadsheet with a row for each possible value of NA

from 0 to 100. The “multiplicity” of mixing is then the number of ways of choosing NA

molecules out of 100, computed in Excel as COMBIN(100,A3), for example, and the entropy
of mixing, in units of k, is the natural logarithm of the multiplicity. Here are the first
several rows of my spreadsheet, and a plot of the entropy:

Ideal mixture, 100 molecules
N_A Omega_mix S_mix / k

0 1 0
1 100 4.60517
2 4950 8.507143
3 161700 11.9935
4 3921225 15.18191
5 75287520 18.13682
6 1192052400 20.89894
7 1.6008E+10 23.49633
8 1.8609E+11 25.94948
9 1.9022E+12 28.27405

10 1.731E+13 30.48232
11 1.4163E+14 32.58424
12 1.0504E+15 34.58797
13 7.1105E+15 36.50035
14 4.4187E+16 38.32721
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Notice that if all the molecules are initially of the same type, converting one of them to the
other type creates 4.6 units of entropy, but converting a second one creates only 3.9 units,
and a converting a third creates only 3.5 units. These di↵erences may not be huge, but
they are quite significant: they indicate that the graph of S vs. NA continues to steepen
even when one is already very close to the endpoint. In the thermodynamic limit where
the number of molecules is large, the slope of S vs. x becomes infinite as x goes to 0 or 1.

Problem 5.58. (A simple model of a nonideal mixture.)
(a) When the system is unmixed, the potential energy due to the interaction of each

neighboring pair is u0. There are N molecules, each with n nearest neighbors, so you
might think that the total potential energy is Nnu0. However, this formula counts
every pair interacting pair twice, so we need to divide by 2 to obtain U = 1

2
Nnu0.
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226 Chapter 7 Quantum Statistics

The plus sign gives the physically relevant solution, since the minus sign would give
a value of s that actually decreases with increasing t. Squaring this expression then
gives

q =
⇡2t2

24

✓
1 + 1� 24

⇡2t
+ 2

r
1� 24

⇡2t

◆
=

⇡2t2

12
� t +

⇡2t2

12

r
1� 24

⇡2t

=
⇡2t2

12
� t +

⇡2t2

12

✓
1� 12

⇡2t
+ · · ·

◆
=

⇡2t2

6
� 2t + · · · .

In the second line I’ve approximated the square root under the assumption that t� 1,
which is true whenever the RH formula applies in the first place. The energy U is just
q⌘, so the heat capacity is

C =
dU

dT
= k

dq

dt
⇡ k

✓
⇡2t

3
� 2

◆
= k

✓
⇡2

3
kT

⌘
� 2

◆
.

The predicted heat capacity is linear in T , as expected, but o↵set downward by a
constant term. This prediction is plotted as the solid line in the graph above. As you
can see, it agrees beautifully with the exact numerical calculation as t becomes large.

Why is the heat capacity of this system independent of N? This may seem like quite
a paradox, since heat capacity must be extensive. However, this model system has no
explicitly specified volume, so the notion of an extensive vs. intensive quantity is not
really meaningful. In real systems, the spacing between energy levels would decrease
with increasing volume. So if you like, you can imagine that there is a hidden volume
dependence in the constant ⌘. In formula 7.48 for the heat capacity of a Fermi gas in
a three-dimensional box, the factor of N really comes from the energy level spacing
as well; see equations 7.51 and 7.54.

Problem 7.28. (Two-dimensional Fermi gas.)
(a) In two dimensions, the allowed energy levels are

✏ =
h2

8mL2
(n2

x + n2
y).

At T = 0, fermions settle into the lowest unfilled levels, so in two-dimensional n-space,
they fill a quarter-circle with radius nmax. The Fermi energy is the highest filled level,
✏F = h2n2

max/8mA. But the total number of fermions in the system is N = 2 ·⇡n2
max/4,

assuming that the fermions have spin 1/2 and hence two allowed states for each spatial
wavefunction. Solving for n2

max and plugging into the formula for ✏F gives

✏F =
h2

8mA

✓
2N
⇡

◆
=

h2N

4⇡mA
.

To compute the total energy, we add up the energies of all filled states and convert
the sum to an integral over a quarter-circle in polar coordinates:

U = 2
X
nx

X
ny

✏(~n) = 2
Z nmax

0

dn

Z ⇡/2

0

d�n ✏(~n) = ⇡

Z nmax

0

n
h2n2

8mA
dn =

⇡h2n4
max

32mA
.
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296 Chapter 8 Systems of Interacting Particles

Problem 8.15. This 4 ⇥ 4 lattice has 24 “bonds” joining neighboring
dipoles, of which 10 (highlighted in the illustration at right) are between
antiparallel dipoles and the other 14 are between parallel dipoles. Therefore
the total energy is

U = 10✏ + 14(�✏) = �4✏.

Problem 8.16. A system of 100 two-state dipoles has 2100, or 1.27 ⇥ 1030, possible mi-
crostates. That’s the total number of terms in the partition function, so if we could calculate
a billion terms per second, it would take us

1.27⇥ 1030

109
seconds = 1.27⇥ 1021 seconds = 4.0⇥ 1013 years

to calculate all the terms. The age of the known universe is approximately 15 billion years,
so this is about 2700 times the age of the known universe.

Problem 8.17. For an Ising model of just two elementary dipoles, the energy is just �✏ if
the dipoles are parallel and ✏ if the dipoles are antiparallel. The states of the system and
their Boltzmann factors are:

"": e✏/kT ; "#: e�✏/kT ; #": e�✏/kT ; ##: e✏/kT .

The partition function is therefore

Z = 2e✏/kT + 2e�✏/kT = 4 cosh(✏/kT ).

The probability of the two dipoles being parallel is

P(parallel) =
2e✏/kT

2e✏/kT + 2e�✏/kT
=

1
1 + e�2✏/kT

,

while the probability of them being antiparallel is

P(antiparallel) =
2e�✏/kT

2e✏/kT + 2e�✏/kT
=

1
1 + e2✏/kT

.

These formulas are plotted in the figure below (left).
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