https://buklibry.com/download/
solutions-manual-of-linear-algebra-and-its-applications-by-polaski-mcdonald-4th-edition/

Linear Algebra and its applications

INSTRUCTOR SOLUTIONS MANUAL

Download full file from buklibry.com

InsTRUCTOR's Solutions Manual Thomas Polaski
 Winthrop University
 Judith McDonald
 Washington State University

Linear Algebra and Its Applications Fourth Edition

David C. Lay
University of Maryland

Addison-Wesley
is an imprint of

PEARSON

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson Addison-Wesley from electronic files supplied by the author.

Copyright © 2012, 2006, 1997 Pearson Education, Inc.
Publishing as Pearson Addison-Wesley, 75 Arlington Street, Boston, MA 02116.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-321-38888-9
ISBN-10: 0-321-38888-7

123456 BB 1514131211

Addison-Wesley
 is an imprint of

PEARSON

Contents

CHAPTER 1 Linear Equations in Linear Algebra 1
CHAPTER 2 Matrix Algebra 87
CHAPTER 3 Determinants 167
CHAPTER 4 Vector Spaces 197
CHAPTER 5 Eigenvalues and Eigenvectors 273
CHAPTER 6 Orthogonality and Least Squares 357
CHAPTER 7 Symmetric Matrices and Quadratic Forms 405
CHAPTER 8 The Geometry of Vector Spaces 453
b. False. See Theorem 6(b).
c. False. If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$, then $a b-c d=1-0 \neq 0$, but Theorem 4 shows that this matrix is not invertible, because $a d-b c=0$.
d. True. This follows from Theorem 5, which also says that the solution of $A \mathbf{x}=\mathbf{b}$ is unique, for each \mathbf{b}.
e. True, by the box just before Example 6 .
10. a. False. The last part of Theorem 7 is misstated here.
b. True, by Theorem 6(a).
c. False. The product matrix is invertible, but the product of inverses should be in the reverse order. See Theorem 6(b).
d. True. See the subsection "Another View of Matrix Inversion".
e. True, by Theorem 7.
11. (The proof can be modeled after the proof of Theorem 5.) The $n \times p$ matrix B is given (but is arbitrary). Since A is invertible, the matrix $A^{-1} B$ satisfies $A X=B$, because $A\left(A^{-1} B\right)=A A^{-1} B=I B=$ B. To show this solution is unique, let X be any solution of $A X=B$. Then, left-multiplication of each side by A^{-1} shows that X must be $A^{-1} B$:

$$
A^{-1}(A X)=A^{-1} B, \quad I X=A^{-1} B, \quad \text { and } \quad X=A^{-1} B
$$

12. Left-multiply each side of the equation $A D=I$ by A^{-1} to obtain

$$
A^{-1} A D=A^{-1} I, I D=A^{-1}, \text { and } D=A^{-1} .
$$

Parentheses are routinely suppressed because of the associative property of matrix multiplication.
13. Left-multiply each side of the equation $A B=A C$ by A^{-1} to obtain

$$
A^{-1} A B=A^{-1} A C, \quad I B=I C, \quad \text { and } \quad B=C .
$$

This conclusion does not always follow when A is singular. Exercise 10 of Section 2.1 provides a counterexample.
14. Right-multiply each side of the equation $(B-C) D=0$ by D^{-1} to obtain

$$
(B-C) D D^{-1}=O D^{-1}, \quad(B-C) I=0, \quad B-C=0, \quad \text { and } \quad B=C .
$$

15. If you assign this exercise, consider giving the following Hint: Use elementary matrices and imitate the proof of Theorem 7. The solution in the Instructor's Edition follows this hint. Here is another solution, based on the idea at the end of Section 2.2.
Write $B=\left[\mathbf{b}_{1} \cdots \mathbf{b}_{p}\right]$ and $X=\left[\mathbf{u}_{1} \cdots \mathbf{u}_{p}\right]$. By definition of matrix multiplication,
$A X=\left[A \mathbf{u}_{1} \cdots A \mathbf{u}_{p}\right]$. Thus, the equation $A X=B$ is equivalent to the p systems:

$$
A \mathbf{u}_{1}=\mathbf{b}_{1}, \quad \ldots A \mathbf{u}_{p}=\mathbf{b}_{p}
$$

Since A is the coefficient matrix in each system, these systems may be solved simultaneously, placing the augmented columns of these systems next to A to form $\left[\begin{array}{llll}A & \mathbf{b}_{1} & \cdots & \mathbf{b}_{p}\end{array}\right]=\left[\begin{array}{ll}A & B\end{array}\right]$. Since A is invertible, the solutions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}$ are uniquely determined, and $\left[\begin{array}{lll}A & \mathbf{b}_{1} & \cdots\end{array} \mathbf{b}_{p}\right]$ must row reduce to $\left[\begin{array}{llll}I & \mathbf{u}_{1} & \cdots & \mathbf{u}_{p}\end{array}\right]=\left[\begin{array}{ll}I & X\end{array}\right]$. By Exercise $11, X$ is the unique solution $A^{-1} B$ of $A X=B$.

$$
\operatorname{det} D=3^{n-2}\left|\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2 & 2 & \ldots & 2 \\
1 & 2 & 3 & 3 & \ldots & 3 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 2 & 3 & 4 & \ldots & n-2
\end{array}\right|=3^{n-2}(1)=3^{n-2}
$$

by Exercise 19. Thus the determinant of the matrix $\left[\begin{array}{ll}A & B \\ O & D\end{array}\right]$ is $2 \operatorname{det} D=2 \cdot 3^{n-2}$.

From $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} construct $P=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 0\end{array}\right]$. Then set $D=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$, where the eigenvalues in D correspond to $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} respectively.
19. Since A is triangular, its eigenvalues are 2,3 , and 5 .

For $\lambda=2: \quad A-2 I=\left[\begin{array}{rrrr}3 & -3 & 0 & 9 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, and row reducing $\left[\begin{array}{lll}A-2 I & 0\end{array}\right]$ yields $\left[\begin{array}{rrrrr}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
The general solution is $x_{3}\left[\begin{array}{r}-1 \\ -1 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{r}-1 \\ 2 \\ 0 \\ 1\end{array}\right]$, and a nice basis for the eigenspace is
$\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\left\{\left[\begin{array}{r}-1 \\ -1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ 0 \\ 1\end{array}\right]\right\}$.
$\underline{\text { For } \lambda=3}: \quad A-3 I=\left[\begin{array}{rrrr}2 & -3 & 0 & 9 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$, and row reducing $\left[\begin{array}{ll}A-3 I & 0\end{array}\right]$ yields
$\left[\begin{array}{rrrrr}1 & -3 / 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. The general solution is $x_{2}\left[\begin{array}{r}3 / 2 \\ 1 \\ 0 \\ 0\end{array}\right]$, and a nice basis for the eigenspace is
$\mathbf{v}_{3}=\left[\begin{array}{l}3 \\ 2 \\ 0 \\ 0\end{array}\right]$.
$\underline{\text { For } \lambda=5}: \quad A-5 I=\left[\begin{array}{rrrr}0 & -3 & 0 & 9 \\ 0 & -2 & 1 & -2 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -3\end{array}\right]$, and row reducing $\left[\begin{array}{lll}A-5 I & 0\end{array}\right]$ yields $\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
The general solution is $x_{1}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$, and a basis for the eigenspace is $\mathbf{v}_{4}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$.

6.8 SOLUTIONS

Notes: The connections between this section and Section 6.7 are described in the notes for that section. For my junior-senior class, I spend three days on the following topics: Theorems 13 and 15 in Section 6.5, plus Examples 1, 3, and 5; Example 1 in Section 6.6; Examples 2 and 3 in Section 6.7, with the motivation for the definite integral; and Fourier series in Section 6.8.

1. The weighting matrix W, design matrix X, parameter vector β, and observation vector \mathbf{y} are:

$$
W=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], X=\left[\begin{array}{rr}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right], \beta=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right], \mathbf{y}=\left[\begin{array}{l}
0 \\
0 \\
2 \\
4 \\
4
\end{array}\right]
$$

The design matrix X and the observation vector \mathbf{y} are scaled by W :

$$
W X=\left[\begin{array}{rr}
1 & -2 \\
2 & -2 \\
2 & 0 \\
2 & 2 \\
1 & 2
\end{array}\right], W \mathbf{y}=\left[\begin{array}{l}
0 \\
0 \\
4 \\
8 \\
4
\end{array}\right]
$$

Further compute

$$
(W X)^{T} W X=\left[\begin{array}{rr}
14 & 0 \\
0 & 16
\end{array}\right],(W X)^{T} W \mathbf{y}=\left[\begin{array}{l}
28 \\
24
\end{array}\right]
$$

and find that

$$
\hat{\beta}=\left((W X)^{T} W X\right)^{-1}(W X)^{T} W \mathbf{y}=\left[\begin{array}{rr}
1 / 14 & 0 \\
0 & 1 / 16
\end{array}\right]\left[\begin{array}{l}
28 \\
24
\end{array}\right]=\left[\begin{array}{r}
2 \\
3 / 2
\end{array}\right]
$$

Thus the weighted least-squares line is $y=2+(3 / 2) x$.
2. Let X be the original design matrix, and let \mathbf{y} be the original observation vector. Let W be the weighting matrix for the first method. Then $2 W$ is the weighting matrix for the second method. The weighted least-squares by the first method is equivalent to the ordinary least-squares for an equation whose normal equation is

$$
\begin{equation*}
(W X)^{T} W X \hat{\beta}=(W X)^{T} W \mathbf{y} \tag{1}
\end{equation*}
$$

while the second method is equivalent to the ordinary least-squares for an equation whose normal equation is

$$
\begin{equation*}
(2 W X)^{T}(2 W) X \hat{\beta}=(2 W X)^{T}(2 W) \mathbf{y} \tag{2}
\end{equation*}
$$

Since equation (2) can be written as $4(W X)^{T} W X \hat{\beta}=4(W X)^{T} W \mathbf{y}$, it has the same solutions as equation (1).

