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b. False. See Theorem 6(b).

c. False. If
1 1

0 0
A = , then ab – cd = 1 – 0 ≠ 0, but Theorem 4 shows that this matrix is not 

invertible, because ad – bc = 0. 
d. True. This follows from Theorem 5, which also says that the solution of Ax = b is unique, for

each b.
e. True, by the box just before Example 6.

10. a. False. The last part of Theorem 7 is misstated here.

b. True, by Theorem 6(a).

c. False.  The product matrix is invertible, but the product of inverses should be in the reverse order.
See Theorem 6(b).

d. True.  See the subsection “Another View of Matrix Inversion”.
e. True, by Theorem 7.

11. (The proof can be modeled after the proof of Theorem 5.) The n×p matrix B is given (but is
arbitrary). Since A is invertible, the matrix A–1B satisfies AX = B, because A(A–1B) = A A–1B = IB =
B. To show this solution is unique, let X be any solution of AX = B. Then, left-multiplication of each
side by A–1 shows that X must be A–1B:

A–1 (AX) = A–1B,     IX = A–1B,     and     X = A–1B. 

12. Left-multiply each side of the equation AD = I by A–1 to obtain
 A–1AD = A–1I, ID = A–1, and D = A–1. 

  Parentheses are routinely suppressed because of the associative property of matrix multiplication. 

13. Left-multiply each side of the equation AB = AC by A–1 to obtain
A–1AB = A–1AC,     IB = IC,     and     B = C. 

This conclusion does not always follow when A is singular. Exercise 10 of Section 2.1 provides a 
counterexample. 

14. Right-multiply each side of the equation (B – C)D = 0 by D–1 to obtain
(B – C)DD–1 = 0D–1,     (B – C)I = 0,     B – C = 0,     and    B = C. 

15. If you assign this exercise, consider giving the following Hint: Use elementary matrices and imitate
the proof of Theorem 7. The solution in the Instructor’s Edition follows this hint. Here is another
solution, based on the idea at the end of Section 2.2.

Write B = [b1  ⋅ ⋅ ⋅  bp] and X = [u1  ⋅ ⋅ ⋅  up]. By definition of matrix multiplication,

AX = [Au1  ⋅ ⋅ ⋅  Aup]. Thus, the equation AX = B is equivalent to the p systems:
 Au1 = b1,   …  Aup = bp 

  Since A is the coefficient matrix in each system, these systems may be solved simultaneously, 
placing the augmented columns of these systems next to A to form [A   b1  ⋅ ⋅ ⋅  bp] = [A   B]. Since A 
is invertible, the solutions u1, …, up are uniquely determined, and [A   b1  ⋅ ⋅ ⋅  bp] must row reduce to 
[I   u1  ⋅ ⋅ ⋅  up] = [I   X]. By Exercise 11, X is the unique solution A–1B of AX = B. 
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2 2 2

1 1 1 1 1

1 2 2 2 2

det 3 3 (1) 31 2 3 3 3

1 2 3 4 2

n n nD

n

− − −

…
…

= = =…

… −

by Exercise 19. Thus the determinant of the matrix 
A B

O D
 is 22det 2 3 .nD −= ⋅
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  From 1 2,v v  and 3v  construct 1 2 3

1 2 1

1 1 1 .

1 2 0

P = =v v v  Then set 

2 0 0

0 1 0 ,

0 0 0

D

−
= −  where 

the eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 

19. Since A is triangular, its eigenvalues are 2, 3, and 5.

  For  = 2:   

3 3 0 9

0 1 1 2
2 ,

0 0 0 0

0 0 0 0

−
−

− =A I  and row reducing [ ]2   A I− 0  yields 

1 0 1 1 0

0 1 1 2 0
.

0 0 0 0 0

0 0 0 0 0

−
 

The general solution is 3 4

1 1

1 2
,

1 0

0 1

− −
−

+x x  and a nice basis for the eigenspace is 

1 2

1 1

1 2
{ } .

1 0

0 1

− −
−

, = ,v v

  For λ = 3:   

2 3 0 9

0 0 1 2
3 ,

0 0 1 0

0 0 0 1

−
−

− =
−

−

A I  and row reducing [ ]3   A I− 0  yields

1 3 2 0 0 0

0 0 1 0 0
.

0 0 0 1 0

0 0 0 0 0

− /

 The general solution is 2

3 2

1
,

0

0

/

x  and a nice basis for the eigenspace is 

3

3

2
.

0

0

=v  

  For λ = 5:   

0 3 0 9

0 2 1 2
5 ,

0 0 3 0

0 0 0 3

−
− −

− =
−

−

A I  and row reducing [ ]5   A I− 0  yields 

0 1 0 0 0

0 0 1 0 0
.

0 0 0 1 0

0 0 0 0 0

 

The general solution is 1

1

0
,

0

0

x  and a basis for the eigenspace is 4

1

0
.

0

0

=v  
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6.8 SOLUTIONS 

Notes: The connections between this section and Section 6.7 are described in the notes for that section. 
For my junior-senior class, I spend three days on the following topics: Theorems 13 and 15 in Section 6.5, 
plus Examples 1, 3, and 5; Example 1 in Section 6.6; Examples 2 and 3 in Section 6.7, with the 
motivation for the definite integral; and Fourier series in Section 6.8. 

 1. The weighting matrix W, design matrix X, parameter vector β, and observation vector y are:  

   0

1

1 0 0 0 0 1 2 0

0 2 0 0 0 1 1 0

, , ,0 0 2 0 0 1 0 2

0 0 0 2 0 1 1 4

0 0 0 0 1 1 2 4

W X
β
β

−
−

= = = =yβ  

  The design matrix X and the observation vector y are scaled by W:  

   

1 2 0

2 2 0

,2 0 4

2 2 8

1 2 4

WX W

−
−

= =y  

  Further compute  

   
14 0 28

( ) , ( )
0 16 24

T TWX WX WX W= =y  

  and find that  

   1 1/14 0 28 2ˆ (( ) ) ( )
0 1/16 24 3/ 2

T TWX WX WX W−= = =yβ  

  Thus the weighted least-squares line is y = 2 + (3/2)x. 

 2. Let X be the original design matrix, and let y be the original observation vector. Let W be the 
weighting matrix for the first method. Then 2W is the weighting matrix for the second method. The 
weighted least-squares by the first method is equivalent to the ordinary least-squares for an equation 
whose normal equation is  

   ˆ( ) ( )T TWX WX WX W= yβ  (1) 

  while the second method is equivalent to the ordinary least-squares for an equation whose normal 
equation is   

 ˆ(2 ) (2 ) (2 ) (2 )T TWX W X WX W= yβ  (2) 

  Since equation (2) can be written as ˆ4( ) 4( ) ,T TWX WX WX Wβ = y  it has the same solutions as  
equation (1). 
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