
https://buklibry.com/download/
solutions-manual-of-introduction-to-vhdl-by-hunter-1st-edition/

Download full file from buklibry.com

Introduction to VHDL

https://buklibry.com/download/
solutions-manual-of-introduction-to-vhdl-by-hunter-1st-edition/

Download full file from buklibry.com

I ntrod uction to

VHDL

Solufions manual

R.D.M. Hunter
University of Portsmouth, UK

and

T.T. Johnson
Summit Design Inc., USA

1~!11 SPRINGER-SCIENCE+BUSINESS MEDIA, n.Y.

https://buklibry.com/download/
solutions-manual-of-introduction-to-vhdl-by-hunter-1st-edition/

Download full file from buklibry.com

ISBN 978-0-412-81340-5 ISBN 978-94-011-5838-1 (eBook)
DOI 10.1007/978-94-011-5838-1

First edition 1997

© 1997 R.D.M. Hunter and T.T. Johnson

Originally published by Chapman & Hall in 1997

Apart from any fair deal ing for the purposes of research or private study, or criticism or review, as
permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not be reproduced,
stored, or transmitted, in any form or by any means, without the prior permis sion in writing of the
publishers, or in the case of reprographic reproduction on1y in accordance with the terms of the licences
issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licences issued by
the appropriate Reproduction Rights Organization outside the UK. Enquiries conceming reproduction
outside the terms stated here should be sent to the publishers at the London address printed on this page.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for anY errors or
omissions that may be made.

A catalogue record for this book is available from the British Library

https://buklibry.com/download/
solutions-manual-of-introduction-to-vhdl-by-hunter-1st-edition/

Download full file from buklibry.com

Introduction to VHDL

Preface
This manual contains solutions to the end-of-chapter exercises for the textbook Introduction to

VHDL. It is not claimed that the solutions presented here are, at all times, the best possible, or the
only, solutions to the exercises; on occasion alternative solutions are offered. Where possible
suitable designs have been synthesised. In a number of such cases the waveforms and schematics
have been included, usually in appendices. While it is recognised that Test Benches are becoming
an important issue in VHDL design these are considered beyond the scope of this volume.

N.B. The solutions to the exercises have been tested using certain proprietary tools. No guarantee
is offered that the models contained herein will simulate, or synthesise, correctly on other vendors'
tools.

https://buklibry.com/download/
solutions-manual-of-introduction-to-vhdl-by-hunter-1st-edition/

Download full file from buklibry.com

Introduction to VHDL

E.rroto

P 76
It should not be inferred from the statement that 'IEEE.Std_Iogic_1164 recognises a signal type
composed of ' X', '0', 'I' and 'z' I that these are the only types recognised by this Standard. It should
have been made clearer that the subtype X 0 1 Z would be used throughout, for simplicity, in this
introductory text. However, the solutions in this manual do use the full nine-valued set where
appropriate.

P 135
Line 11: App C should read App B

P 136
Line 9: inter_mediate: a and b ; should read intecmediate := a and b ;

P 140
Wait statement not properly terminated, should read

wat on d, enable until enable = '1' ;

P 146
Architecture statement should read

architecture x of y is

-- semicolon missing

signal num, sum: integer := 0; -- '=' sign was missing in signal initialisation
begin

P 148

si~example : process;
begin
wait for 10 ns ;
num <= num + 1 ;
sum <= sum + num ;

end process si~example ;
end x;

Process labels missing at end of processes viz.
•

begin
•
•

end process no_transport ;
•

begin
•
•

end process with_transport ;

P 152
Second line: use IEEE.Std_logic_1164.all ;

2

-- Should be signal assignment, not variable

-- Should use IEEE and not lEE

https://buklibry.com/download/
solutions-manual-of-introduction-to-vhdl-by-hunter-1st-edition/

Download full file from buklibry.com

P 344
Line 12 Syntax error, should read

function "+" (in_l : new_state; in_2: pe-op)

P444
No terminating statement for component or 1, should read

component or!
port (x, y : in Std_ulogic ;

z : out Std_ulogic) ;
end component;

Introduction to VHDL

-- Semicolon after new_state

There are a number of other small typographical errors throughout the book which do not
materially affect the reading of the text and so these have not been included among these errata.

3

https://buklibry.com/download/
solutions-manual-of-introduction-to-vhdl-by-hunter-1st-edition/

Download full file from buklibry.com

Chapter 4

4.6 Exercises

4.6.1 Describe the purpose of
i) The Entity Declaration
ii) The Architecture Body

Solution:

Introduction to VHDL

i) Provides the entity with a name and defines the interface between a given design entity and the
environment in which it is used. It may also specify declarations and statements that are part of the
design entity. A given entity declaration may be shared by many design entities, each of which has
a different architecture. Thus an entity declaration can, potentially, represent a class of design
entities, each with the same interface. The formal representation is as follows:

entity_declaration: :=
entity identifier is

entity _header
entity_declarative -part

[begin
entity _statement-part]

end [entity] [entity _ simple_name] ;

The entity simple name, if present, must repeat the identifier name. The entity statement part, if
present, consists of concurrent statements that are present in each such design entity.

The entity header declares objects used for communication between a design entity and its
environment.

entity_header: :=
[formaCgeneric_clause] - see Chapter 16
[formal-port_clause]

generic_clause ::=
generic (generic Jist) ;

port_clause ::=
port (port_list) ;

In Section 4.5.1 the comment is made that an entity declaration without a port clause has no way
of accepting data from outside itself and no way of transmitting data beyond itself. While this is true
there is an exception with respect to the generation of test benches. In these cases there are no port

4-1

https://buklibry.com/download/
solutions-manual-of-introduction-to-vhdl-by-hunter-1st-edition/

Download full file from buklibry.com

Introduction to VHDL

Solution:
i) nand gate is an illegal identifier, should be written as nand~ate
ii) Character; after b in port statement should be a colon:
iii) Character missing after in BIT should be a semi-colon;
iv) Character; after c in port statement should be a colon:
v) entity not properly terminated should have end nand_gate;
vi) illegal identifier nand gate repeated in architecture statement
vii) Operator «=) illegal after first else.
viii) Must end signal assignment activity stat~m~nt with an else i.e., in this case, else' l'
Note: Activity statement must end with ; (hef()r~ Ih~ end statement).

4.6.3 Produce a design entity for a 3-input and ~JI~ Jnd include commenting code where
appropriate.

Solution:

entity and_gate is
port (a, b, c : in BIT;

d: out BIT) ;
end and_gate ;

architecture data_flow of and_gate is
begin

d <= '1' when a = '1' and b = '1' and c = '1' else '0' ;

-- identifies entity
-- declares input ports

-- declares output port
-- ends entity declaration

-- names architecture body

-- dataflow description of
-- and_gate

-- ends architecture body statement

4.6.4 Produce a model for a '2-to-4· decoder.

Solution:

entity two_to jour _ decod~r is
port (a, b : in BIT :

yO, yl, y2, y3 : out BIT) ;
end two to four decod~r :

architecture data flow of two to four decoder is - -
begin

yO <= 'I' when a = '0' and b = '0' else '0' ;
yl <= 'I' when a = '0' and b = '1' else '0';
y2 <= 'I' when a = 'I' and b = '0' else '0';
y3 <= 'I' when a = 'I' and b = '1' else '0' ;

end data_flow;

It may be noted at this point that the above implementation is not the only, or necessarily the best,
way that the code for the decoder can be written. For example, use could have been made of bit vectors
(see Chapter 5) or the case statement see Chapter 9).

4-3

https://buklibry.com/download/
solutions-manual-of-introduction-to-vhdl-by-hunter-1st-edition/

Download full file from buklibry.com

Introduction to VHDL

9-10

_N 1\

~

.~
-a

,nZetS

GO

-.
_0

19>
\e

_03

,II~

N1

.. zz
-. 79

-. \
-' 5

-. \9>

N18

_N

-.
-.

19'
Z

1Z>
N&I>

Nil)
,,11'

N\I>
~s,>:

N"")!

om
O.~

~

.I]
I

I -
;tY. ~
~~ r!=U'

~: 1

I - J-Jr-'-j _.

~

~

-gJr-
::Dr

c:J): ,. '31

~: ,-

~: '-

'Z9

'28

Fb: ,.

FP:
~: ,.

'21

OJ<

~:
~:
~:
~: ,

FPr
~

032

'3B

031

.cICI.u~."'.BS(12.1Q.z,a)

Fbr
t:P:
~~)-

N3&

..
..

::],
;.- : out<15:9)

J.Jr

~
.>r
~

>r
1I)p -

? -g.->r
)p - >r - >r -liP' -.JJ?, -.JJr, -

B)r

.JJ?,

https://buklibry.com/download/
solutions-manual-of-introduction-to-vhdl-by-hunter-1st-edition/

Download full file from buklibry.com

Introduction to VHDL

15-6

entity sequence_detector is
port (x, clk, reset: in BIT ;

y: out BIT);
end sequence_detector;

architecture synthesised of sequence_detector is
type states is (stateO, statel, statel0, statel00, state 1001) ;
signal currenCstate, nexCstate : states ;

begin
clock :process (clk, reset)
begin

if reset = '0' then
currenCstate <= stateO ;

elsif clk'EVENT and clk'LAST_ VALUE = '0' and clk = '1' then
currenCstate <= nexCstate ;

end if;
end process clock;

fsm : process (currenCstate, x)
begin

y<='O' ;
case currenCstate is
when stateO =>

if x = '0' then
nexCstate <= currenCstate ;

else
nexCstate <= statel ;

end if;
when state 1 =>

if x = '0 then
nexCstate <= statelO ;

else
nexCstate <= currenCstate ;

end if;
when state 1 0 =>

if x = '0' then
nexCstate <= 100 ;

else
nexCstate <= state 1 ;

end if;
when state 1 00 =>

if x = '0' then
next_state <= stateO ;

else
nexCstate <= state 1 00 1 ;

end if;

https://buklibry.com/download/
solutions-manual-of-introduction-to-vhdl-by-hunter-1st-edition/

Download full file from buklibry.com

Introduction to VHDL

16-96

-- switch register without XOR--

ENTITY switch Jegister IS
GENERIC (

resetJevel
);

: Std_ulogic:='l'

PORT (
input_data,inpuUeset: IN Std_ulogic;
clock,reset : IN Std_ulogic;
output : OUT Std_ulogic
);

END switch Jegister;

ARCHITECTURE switchJegister_arch OF switchJegister IS
CONSTANT clock_edge : Std_ulogic:='l';
SIGNAL memory: Std_ulogic:='O';
BEGIN

PROCESS (clock,reset)
BEGIN

IF (clock=clock _edge and clock'EVENT) THEN
IF (reset=resetJevel) THEN

memory<=input_reset;

END IF;
END PROCESS;

ELSE memory<=input_ data;
END IF;

output<=memory;
END switch Jegister _arch;

-- n bit register --

ENTITY shiftJegister IS
GENERIC (

PORT

reset level
reg_stages
);
(

:Std_ulogic:=' I';
:integer:=2#lOlI#

input,clock,reset :IN Std _ ulogic;
output :OUT Std_ulogic
);

END shift_register;

ARCHITECTURE shift_register_arch OF shiftJegister IS
COMPONENT register_cell

GENERIC (

PORT (

END COMPONENT;

reset level
);

input,clock,reset :IN Std _ ulogic;
output :OUT Std_ulogic
);

https://buklibry.com/download/
solutions-manual-of-introduction-to-vhdl-by-hunter-1st-edition/

Download full file from buklibry.com

