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Chapter 1  Energy in Thermal Physics

Problem 1.4. “Twice as hot” on the Celsius (or Fahrenheit) scale would make no sense,
because the zero point is chosen arbitrarily. There’s no fundamental sense, for instance, in
which 2°C is twice as hot as 1°C. But if we measure temperatures from absolute zero, then
“twice as hot” makes perfect sense: the melting point of lead is twice room temperature;
the sun’s surface is 20 times room temperature; and so on. This is another good reason to
use kelvin temperatures.

Problem 1.5. I was taught to leave the thermometer in my mouth for at least three
minutes. However, the bulb of the thermometer must come moast of the way up to body
temperature within 10 or 20 seconds; waiting three minutes is necessary only because we
want a reading that is accurate to within a fraction of a degree. The numerical value of
the “relaxation time” could therefore be anywhere from 10 or 20 seconds to three minutes,
depending on exactly how we define it.

Problem 1.6. On a cold morning, when I step from the bathroom rug into the tub for my
shower, the tub feels a lot colder to my feet than the rug. Yet they must be at essentially
the same temperature, since they’ve been right next to each other all night long in a room
that is pretty well insulated from the weather. In fact the rug is just as cold as the tub, but
it sucks heat out of my feet much more slowly due to its relatively poor thermal contact
and low heat capacity. For another example, see the quote on page 48.

Problem 1.7. (Thermal expansion of liquids.)

(a) The mercury thermometer from my medicine cabinet has a roughly cylindrical bulb
that measures 4 mm in diameter by 5 mm long. Its volume is therefore about 60 mm?3.
Under a 1°C temperature increase, this much mercury should increase in volume by

AV =f-V-AT = (1.81 x 10~* K™1)(60 mm®)(1 K) = 0.011 mm®.

The expansion, however, takes place inside a narrow tube with a length of 8.5 mm (the
length of a 1°C increment on the scale) and unknown cross-sectional area. Assuming
that the tube is cylindrical, its radius would have to be

[AV /0.011 mm?
T= _;r-l_ = m = 002 mm,

so its diameter would be only 0.04 mm. No wonder it’s so hard to see the column of
* mercury, even with the optical magnification of the glass!

(b) As the water in a lake cools, the densest water will sink to the bottom and the less
dense water will rise to the top. Below 4°C, this means that the warmer water will
sink while the cooler water rises. The first water to freeze will therefore be at the top;
and since ice is even less dense, the ice floats on the surface. This ice then insulates
the rest of the water from the cold weather, so even during a long, cold winter, only
the smallest ponds freeze completely from top to bottom.

If the thermal expansion coefficient of water were always positive, then the coldest
water in a lake would always be at the bottom, so ice would form first at the bottom.
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If ice were also more dense than liquid water, the lake would freeze from the bottom
up. Without the insulating layer of ice on top, many lakes would freeze completely,
and any fish in these lakes would be frozen along with them. (If ice were still less
dense than water, I suppose bits of ice would form at the bottom and then float to
the surface.)

Problem 1.8. (Thermal expansion of solids.)

(a) Let’s say the annual temperature extremes are —30 and +40 Celsius, for a total vari-
atijon of 70 K. Under this variation, the change in length of a 1-km steel bridge would
be

AL = oL AT = (1.1 x 1075 K~1)(1000 m)(70 K) = 0.77 m = 77 cm.

To be safe, I'd design the bridge to accomodate at least a meter of thermal expansion.

(b) The two metals in the coil have different thermal expansion coefficients, so as the
temperature increases, one expands more than the other, causing the coil to coil further
and turn.

(c) Imagine a rectangular solid with dimensions L, L,, and L,. When the temperature
increases, the solid expands in all three dimensions:

f =

]
l z '
i !
| = Y
i iy
| i T

Assuming that the expansion is infinitesimal, we consider it to be equivalent to adding
the three shaded slabs to the volume of the solid, neglecting the corner strips omitted
from the diagram. Then the volume increase is

AV =(AL;)L,L, + (AL)L.L, + (AL,;)L.L,.
Writing each AL in terms of the appropriate linear expansion coefficient, this becomes

AV = (0L, AT)L, L, + (ayLy AT)L,L, + (e, L, AT)L, L,
= (e + oy + )V AT,
Comparing to the definition of the volume expansion coefficient 5, we see that this
result has the same form, with 8 = a, + @y + a,.

Alternatively, we can rewrite the definitions of a and 3 in terms of derivatives:

1dL 1dv

“<iar Pvar
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(Technically, these should be partial derivatives, with pressure held fixed.) With the
aid of the product rule, the derivation is now nothing but symbol-pushing:

drL dL dL

1dv z y L
= %= ALy i3 0
p= V daT VdT(L LL.) = [dT LyL. + dT LaLe+ dT Y

-7 [(a,L,)LyLz + (ctLy)LoLs + (azL,)L,Ly]

= %[cx: +ay +a;| L LyL. = a; + ay + a..

Problem 1.9. For a mole of air at room temperature and atmospheric pressure,

nRT _ (1 mol)(8.31 J/molK)(300 K)
==

— 3 _ 3
105 N/m? =0.025 m® = 25 liters.

V=

Problem 1.10. Consider an “average” room measuring 4 meters square by 3 meters high.
The number of air molecules (at room temperature and atmospheric pressure) is

N PV _ (10° N/m?)(4 m)(4 m)(3 m)

= =1.2 x 10*" = 10%".
kT ~ (1.38 x 10-% J/K)(300 K) x

(That’s about 2000 moles.)

Problem 1.11. Since the rooms are connected by an open door, the pressure must be the
same in each room; if it weren’t, air would rush from one room into the other. Also we're
told that the volume of each room is the same. Now look at the ideal gas law: PV = NkT.
The left-hand-side is the same for both rooms, so Room B, which has a smaller T', must
have a larger N, hence a larger mass of air.

Problem 1.12. The volume per molecule for an ideal gas at room temperature and
atmospheric pressure is
v _ (1.38 x 107% J/K)(300 K)

5= 7 05 N /m? =4.1x10"* m® =41 nm*.

If we imagine each molecule being in a cube of this volume, then the width of the cube
would be the cube root of this number, 3.5 nm. This is then a good estimate of the average
distance between neighboring molecules. The diameter of a molecule like N, or H;O, on the
other hand, is only a few angstroms, about ten times smaller than this average distance.

Problem 1.13. In each case we merely need to determine the total number of protons
plus neutrons in one molecule {or for the solids, one atom). Since a mole of protons or
neutrons has a mass of one gram, this same number is the mass of the sample in grams.

(a) Water is H,O; each hydrogen atom has just a single proton while the oxygen has 8
protons and 8 neutrons, so we have 18 nucleons total, and a mole of water therefore
has a mass of 18 grams.
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(b) Each nitrogen atom has 7 protons and 7 neutrons, so an N; molecule has 28 nucleons
and a mole of them therefore has a mass of 28 grams.

(c) The atomic mass of lead is 207 (a weighted average over several common isotopes), so
a mole of lead has a mass of 207 g.

(d) A quartz “molecule” has 28 nucleons in the silicon atom and 32 in the two oxygen
atoms, for a total of 60, so a mole of quartz has a mass of 60 g.

Problem 1.14. For a mole of pure Ny, the mass would be 28 g; for O, the mass would
be 32 g; and for Ar, the mass would be 40 g. For the mixture found in dry air, therefore,
the mass would be the weighted average:

= (0.78)(28 g) + (0.21)(32 g) + (0.01)(40 g) = 28.96 g ~ 29.0 g.

Problem 1.15. The upward buoyant force on the balloon is equal to the weight of the air
displaced. Assuming that this force is approximately in balance with gravity, we can write
pVg=(M+pV)g or  p—p=M/V,
where po is the density of the surrounding air, V' is the volume of the balloon, and M is the
mass of the unfilled balloon and payload, and p is the density of the air inside the balloon.

According to the ideal gas law, the density of air is
_mn__mP
p= vV - ERT
where m is the mass of one mole of air (29 g, as shown in the previous problem). This
formula applies either inside or outside the balloon, with the same pressure in both places
but different temperatures. Therefore the balance of forces implies
mP mP M
R RV
where T is the temperature inside the balloon and Tj is the temperature outside. A bit of
algebra then yields

Let’s assume an outside air temperature of 290 K, and atmospheric pressure. The volume
of the balloon can be estimated from Figure 1.1: Comparing to the heights of the people
standing underneath, I estimate the balloon in the foreground to have a diameter of about
50 feet or 15 meters, and therefore a volume of 7r° = 1770 m®. The mass of the unfilled
balloon and payload is assumed to be 500 kg, so the previous expression evaluates to
1 1  500kg 8.31 J/K _ r 1 1
T 290K 0.029 kg (10° N/m?)(1770 m3) 290 K 1235K 379K’
Thus the temperature inside the balloon must be about 379 K or just over 100°C. (Thanks
to Chuck Niederriter for informing me that this is indeed a typical operating temperature.)
Assuming this temperature, the mass of the air inside the balloon should be roughly
mPV  (0.029 kg)(10° N/m?)(1770 m®)
RT ~ (8.31 J/K)(379 K)
more tha.n three times the mass of the unfilled balloon and payload!

M. =mn=

= 1600 kg,
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Chapter 1 Energy in Thermal Physics

Problem 1.16. (The exponential atmosphere.)

(2)

(b)

(c

~—

(d)

atea = A lP(z+dz)-A

e O e Tpp—— r—z+dz

: AT i

c.---____-__--..-_-_...'.l ______________ —z

P(z)-A
Mechanical equilibrium requires that the vertical forces balance:
Mg

P(z+dz2) - A+ Mg = P(z) - 4, or P(z+dz)—-P(z)=—T,

where A is the area of the slab and M is its total mass. Plugging in M = pAdz,
canceling the A’s, and dividing through by dz gives

P(z+dz) — P(z) _ £=_ ]
_dz—— = —pg or Tz Pq

The density of the gas is p = M/V = Nm/V = Pm/kT, where m is thc.a average
molecular mass and in the last step I've used the ideal gas law. Thus the differential
equation becomes

dP mg

—=——P.
z kT
The function P(z) is one whose derivative is some constant {(namely —Trzg/ kT) .times
itself. The function Ae®* has this property, where a = ~mg/ ki." and 64 is an arbitrary
constant whose interpretation is the value of P when z = 0 (since € = 1). Thus the
solution is

P(z) = P(0) e™™o=/*T

The density p(z) is just m/kT times P(z), so it has the same exponential form with a
different constant out in front. The constant, P(0) - m/kT, must be p(0) because the
exponential again equals 1 at z = 0.

T'll take z = 0 at sea level so that P(0) = 1 atm. I'll also take T = 280 K as an
average temperature at the locations given. Air is 80% nitrogen (N3), so the mass
of a molecule in kilograms is about .028/N,4, hence the quantity kT'/'n_r,g is roughly
RT/(.028 kg)(9.8 N/kg) = 8500 meters or about 28,000 feet.. (Tkus is the he?ght
at which the pressure has fallen to 1/e atmospheres.) Plugging in the elevations
given, I find for Ogden (4700 feet), P = e~!" atm = .84 atm; Leadville (10500 feet),
P = .69 atm; Mt. Whitney (14,500 feet), P = .59 atm; Mt. Everest (29,000 feet),
P = .35 atm.
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Problem 1.17

Problem 1.17. (The virial expansion.)
(a) Truncating the virial expansion after the second term, we have

(b)

(¢)

PV =nRT<1 + %)

For given values of P, T, and B, this is a quadratic equation for V/n. However, it is °

reasonable to assume that the second term on the right-hand side is small compared

to the first, so we can find V/n accurately enough from the ideal gas law. At 100 K
and 1 atm,

V _ RT _ (8.315 J/mol - K)(100 K) _ 3
—=F= 1013 % 10° Pa = 0.00823 m®/mol.

Therefore the correction term under these conditions is

B(T)  —160 x 10~ m3/mol — _0.019
V/n = 000823 m®/mol

In other words, the volume of the gas is about 2% less than the ideal gas law would

predict (or at a given volume, the pressure is 2% less). Repeating the calculation for
the other temperatures, I find:

T B/(V/n)

100 —0.019
200 ~0.0021
300 —0.00017

400 +0.00027
500 +0.00041
600 +0.00043

Notice that at reasonably high temperatures, the correction to the ideal gas law is less
than one part in a thousand {at atmospheric pressure).

Attractive forces between molecules should reduce the pressure of a gas, yielding a
negative second virial coefficient, while repulsive forces should increase the pressure,
leading to a positive second virial coefficient. Apparently the forces between mole-
cules can be either attractive or repulsive, with attractive forces dominating at low
temperatures and repulsive forces dominating at high temperatures. Does this make
sense? I think so. Molecules attract each other weakly when they’re close but not
“touching.” At low temperatures, they’ll be moving slowly enough for this attraction
to have a significant effect on the pressure. But when molecules collide head-on, they
repel each other strongly. At high temperatures, when the molecules are moving very
fast, this should be the more significant effect.

Solving the van der Waals equation for P, then factoring out n.RT/V on the right-hand

. side, puts it into the form

1 an
PV_nRT(l—nb/V - RTV)'
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Problem 1.27. Temperature increase with no heat added: The resistor in the previous
problem provides an example; it gets hot as the battery supplies energy in the form of
work (mot heat). Other examples would be “heating” a cup of tea in the microwave, or
compressing air to pump up a bicycle tire, or simply rubbing your hands together. Heat
input with no increase in temperature: I can think of two types of examples. The first is a
phase change, like boiling a pot of water on the stove. Heat is constantly flowing in, but
the temperature of the water remains at 100°C (or at whatever the boiling temperature
is at your altitude). The second type of example is when the system does work on its
surroundings to compensate for the energy put in as heat. For instance, you could have a
gas in a cylinder with a flame under it, while letting the piston out fast enough that the
gas actually cools.

Problem 1.28. Let’s say we have 200 g of water, initially at 20°C. Then the total energy
required to bring it to 100° is (200)(80) calories or 67,000 J. The microwaves pump in 600 J
per second, so the total time required should be (67,000 J)/(600 J/s) = 110 seconds, or
about two minutes. (This coincides roughly with my experience.)

There is no heat involved in this process because heat is a spontaneous flow of energy
from a hot object to a cold object. In this case there is no hotter object from which heat is
flowing into the water. (If anything, heat is flowing out of the water into the cup and the
surrounding air.) The transfer of energy from the magnetron into the water is classified as
electromagnetic work.

Problem 1.29. The 5° temperature increase of the water requires the input of energy:
specifically, 5 calories per gram, or 1000 calories total (4200 J). This energy could have
entered as heat, but it also could have entered as work, for instance, by someone vigorously
stirring or shaking the water. So the answer is that I can conclude nothing about how
much heat was added to the water. (Probably the amount of heat added was no greater
than 1000 cal, since there’s no easy way for the water to lose energy by doing work. But
it’s not impossible, and it’s certainly permitted by the first law of thermodynamics.)

Problem 1.30. For this experiment I used about an ounce of water in an eight-ounce
plastic bottle that was small enough to hold between my fingers and thumb for rapid
shaking. I was able to shake it back and forth about four times per second, with the water
traveling about a foot during each half-shake or about eight feet total per second. Using
the water’s average speed to compute the kinetic energy that gets converted to thermal
energy, I would then predict for each half-shake

2
meAT = %mv2 oo AT= ! ( 0.3 m

k)
2¢  2(4200 J/kg°C) \0.125 s

2

) = 0.00069°C.
With eight half-shakes per second, the temperature rise after one minute should therefore
be about 0.3°C. What I actually found upon trying the experiment three times, shaking
for three to five minutes each time, was a pretty consistent temperature rise of 1.0°C per
minute. However, my theoretical calculation could be on the low side because I used only
the average speed of the water, when perhaps I should have used the maximum speed.
Also, as a control I tried simply holding the bottle in my hand for a few minutes, and this

Problem 1.32 13

produced a temperature increase of between 0.3 and 0.5°C per minute simply from the heat
of my fingers. To do the experiment more accurately it would probably be best to use a
bit more water, and to wear gloves or otherwise insulate the system from the heat of my
fingers. But I've already demonstrated that kinetic energy can be converted to thermal
energy, producing a temperature increase of the expected order of magnitude.

Problem 1.31. (A belium expansion example.)

(a)

P (atm)

‘ 1 2 3V (liters)

(b) The work done is minus the area under the graph (shaded). The easiest way to
compute this area is to note that the average pressure during the process is 2 atm, so
W =-PAV = —(2 atm)(2 liters) ~ —(2 x 10° Pa)(2 x 1073 m?) = —400 J. -
The minus sign indicates that 400 J of work is done by the gas on its surroundings.
{c) Each helium atom has three degrees of freedom, so at any point the thermal energy

of the helium is I/ = $NkT = 3PV. The change in energy during this process is
3 3
AU = 3 [PV - PV = 3 [(3 atm)(3 liters) — (1 atm)(1 liter)]
= 12 liter - atm = 1200 J.
(d) By the first law,
Q=AU - W =1200 J - (—400 J) = 1600 J.
This amount of heat enters the gas.

(e) To cause such an increase in pressure (and temperature) as the gas expands, you must
provide heat, for instance, by holding a flame under the cylinder and letting the piston
out slowly enough to allow the pressure to rise as desired.

Problem 1.32. (Compressing water.)

]
2001

P (atm)

0.99 1.00 V (liters)
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Chapter 1 Energy in Thermal Physics

Problem 1.40. (Dry adiabatic lapse rate.)

(2)

(b)

Starting from the first law and setting @ =0,
dU=Q+W=W =~PdV.
For an ideal gas, U = éNkT, so
%Nk dT' = —PdV. (1.35)
In this equation there are three variables—T, V', and P. In this problem we want to

eliminate V in favor of T and P. One way to do this is to start with the ideal gas law
and consider a small change in each side of the equation:

d(PV) = NkdT.

The left-hand side is P dV + V dP, by the product rule for derivatives, so

PdV = NkdT — VdP = NkdT - #dﬂ
where I've used the ideal gas law again in the last step. Therefore equation 1.35
becomes

gdeT = —NkdTl + NTIdeP.

Canceling the Nk and collecting terms gives

f+2,.. T ar _ 2 T

== BT P

(You can also derive this differential equation from the solutions for T’ and P in terms
of V, equations 1.39 and 1.40.)
The result of part (a) can be written

2 T
f+2P
this is the change in temperature under an infinitesimal adiabatic change in pressure
dP. If this change occurs because the air mass is rising a distance dz, and if the
vertical forces on it are balanced throughout this process, then the result of Problem
1.16(b) tells us that

dl’ = dP,

mg
dP = —ﬁP dz,
where m is the average mass of an air molecule. Therefore the change in temperature
s 2 Tmg 2 mg
dT = _f_—i-—i—lsﬁpdz = —m—k——dz,

and the temperature gradient is

ar _ 2 mg _ 2 Mg

=T FrIE FRI R

where M is the molar mass of air, 29 g/mol. Plugging in f = 5 and g = 9.8 N/kg, the
numerical value comes out to
dl  2(.029 kg)(9.8 N/kg)

— _2(029kg)98 N/kg) _ = 9.8 K/km.
4> 7 8315 J/mol K 0098 K/m /
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Problem 1.41. (Measuring a heat capacity.)
(a) The heat gained by the water is

M€y (AT ), = (250 g)(4.186 J/g-°C)(4°C) = 4186 J.

(b) The heat lost by the metal must be the same as the heat lost by the water, 4186 J,
since there are no other energy transfers going on and energy must be conserved.

(c) The heat capacity of the chunk of metal must therefore be
Q 41867

Cm=AT. = "i5°C

=55 J/°C.

(d) The specific heat capacity is the heat capacity per unit mass,

_ Cn _553/°C

M 100 g

=0.55 J/g-°C.

Problem 1.42. The heat lost by the water should be approximately equal to the heat
gained by the pasta. Therefore,

M Cou (T = Ty) = mpey(Ty — Tp),

where w stands for water, p for pasta, and f for the common final temperature. Solving
for Ty gives

Moy Cow Ly + Mpey Ty

My Cy + MpCp
_ (1500 g)(4.186 J/g-°C)(100°C) + (340 g)(1.8 J/g-°C)(25°C)
- (1500 g)(4.186 J/g->C) + (340 g)(1.8 J/g-<C)

Tf=

=03.3°C.

So we would expect the water temperature to drop by nearly 7°C, assuming that equilibra-
tion happens faster than the stove can provide any significant additional heat. To prevent

the water temperature from dropping so much, it might be wise to use a bigger pot of
water.

Problem 1.43. Suppose we have 18 g of water, which makes exactly one mole. The total
heat capacity is 18 - 4.186 J/K, so the heat capacity per molecule is

C 18-4.186 J/K _ _2o _
N—W—l.%xlo J/K =9.07k.
If all the thermal energy were stored in quadratic degrees of freedom, then each would get
a heat capacity of k/2, so there would have to be 18 degrees of freedom per molecule—an
unrealistically large number. In fact, much of the thermal energy is stored in the energy of
intermolecular interactions, and these energies are not quadratic functions of position.

19
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Problem 5.9. According to equation 5.24, the slope Gﬂl
of a graph of G vs. T at fixed P should be minus the
entropy. Therefore the slope is always negative, and
becomes steeper as T and S increase. When the sub-
stance undergoes a phase transformation, its entropy
increases abruptly, so the slope of the graph of G should
be discontinuous. The graph at right shows all these
features qualitatively.

Problem 5.10. From the relation (8G/dT)p = —S, we can write the change in G as
8G = —SdT. The table on page 405 lists the entropy of a mole of water under standard
conditions as 69.91 J/K, so the change in G from 25°C to 30°C is

dG = —(69.91 J/K)(5 K) = —349.6 J.

In other words, the Gibbs free energy is about 350 J lower at 30°C than at 25°C. If we
now imagine increasing the pressure at fixed temperature, the relation (0G/9P)p =V tells
us that dG = V dP, where V is the volume of a mole of water, 18.07 x 10~% m3. Raising
the pressure therefore increases G. To produce an increase of 349.6 J, we would need to
increase the pressure by
dG 349.6 J
=—=-———"""___ =193 x 107" Pa =193 bars.

P = = x5 o ks are
The moral of the story is that temperature changes tend to have much larger effects on G
than pressure changes, at least within the realm of conditions familiar to us in everyday
life.

Problem 5.11. (Hydrogen fuel cell at 75°C.)

(a) Under an “infinitesimal” temperature change dT', the Gibbs free energy changes by
dG = —SdT. Taking dT = 50 K and looking up the room-teraperature entropies, we
obtain (for a mole of each substance)

Hy: G =0- (131 J/K)(50 K) = —6550 J;
0, G=0- (205 J/K)(50 K) = —10250 J;
H,O: G = —237000 J — (70 J/K)(50 K) = —240500 J.

(Of course, the entropies are not constant over this temperature interval, so it would
be better to first estimate the entropy of each substance in the middle of the inter-
val, at 323 K, and use that value instead of the room-temperature value. For H,
the increase in entropy between 298 K and 323 K is approximately CpIn(T}/T}) =
(29 J/K)1n(323/298) = 2.3 J/K. The entropies of the O, and H;O are likewise only
slightly greater at 323 K.)
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Problem 5.12
(b) At 75°C, AG for the reaction is
Gh,0 — Gu, — 1Go, = ~240500 J + 6550 J + 5125 J = —229 kJ.

Thus, the maximum electrical work done by the cell is only 229 kJ (per mole of
hydrogen consumed), about 3.5% less than the room-temperature value of 237 kJ.
Why the difference? The reacting gases have a lot of entropy, which must be gotten
rid of by dumping waste heat into the environment. At the higher temperature, we
need to dump more waste heat to get rid of this entropy, so less of the energy is left
to perform electrical work. '

Problem 5.12. (Maxwell relations.) Starting with the function U(S, V), we assume that
this function is well enough behaved that the mixed second derivatives are equal:

8 (8U\ 8 (8U

av\as /) as\aov /)
But the thermodynamic identity for U, dU = T'dS — PdV, tells us that (8U/8S)y =T
and (OU/8V)s = —P. Plugging in these quantities gives us our first Maxwell relation,

(@).=-(s),

Next, consider the enthalpy H, which due to the thermodynamic identity dH = T'dS+V dP
is best considered a function of S and P. Equality of the mixed second derivatives tells us

that
0 (0H\ _ 4 (0H
8P\ 8s )~ 95\6P )

But by the thermodynamic identity for H, (0H/0S)p =T and (0H/8P)s = V. Plugging
in these quantities gives us a Maxwell relation for H,

@)= (),

The Helmholtz free energy, due to its thermodynamic identity dF = —5 dT'— PdV, is most
naturally considered a function of T and V. The equality of mixed second derivatives is

therefore
o (9F\ _ 5 (0F
ovier /) 8T \ov /)

But the thermodynamic identity for F tells us that (8F/8T)y = —S and (8F/dV)r = —P.
Plugging in these values gives a third Maxwell relation,

&), = (ar).

Finally, consider the Gibbs free energy, G(T, P). The relevant equality of mixed second

derivatives is
0 (8G\ _ b (5G
aP\adT ) ~ 8T \8P )’
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Chapter 7 Quantum Statistics

Problem 7.35. (Doped semiconductors.) ,
(a) We saw in Problem 7.33 that for pure silicon at room temperature, the number of

electrons excited from the valence band into the conduction band is on the order of
106 per cubic meter, or 101° per cubic centimeter. On the other hand, in Problem
7.5 we saw that for silicon doped with 10*7 phosphorus atoms per cubic ¢entimeter,
nearly every P atom contributes an electron to the conduction band (at room temper-
ature). Therefore, it should be a good approximation to entirely neglect the electrons
excited from the valence band, as in Problem 7.5. Under this assumption, the chemical
potential is as calculated in Problem 7.5(b):

2V 2V
=- = —kTl ,
K len(chq> n(fl:Nd’UQ)

where the energy zero-point is taken to be €. (the bottom of the conduction band).
Here N, is the number of conduction electrons, equal to the number of donor impurities
(N,) times the dimensionless fraction = that was calculated in Problem 7 .5(d):

el/t kT
z= 515(\/1 +4y—1),

o) t=-—1,

where I is the donor ionization energy, 0.044 V. The number 0.0036, calculated for

silicon doped with 107 phosphorus atoms per cm®, also comes up in the formula for p:
Nd'UQ _ 0.0036

v $3/2
Therefore we can write the formula for z as

3/2
JERS st
I (0.0036)z
To plot this function, I used the following Mathematica code, which produced the
graph below:

y = (0.0036)

y[t_] := 0.0036 * Exp[1/t] / t"1.5
x[t_] := (Sqrtli+dy[t]] - 1) / (2yltD
Plot [-t*Log[2*%t~1.5/(0.0036+x[t])],{t,0,1}]

02 0.4 0.6 0.8 T kT/1

Notice that at T = 0, p = —I/2, halfway between the bottom of the conduction band
and the energy of the electrons bound to the donor jons. As the temperature increases,
the chemical potential drops, just as for an ordinary ideal gas.
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Problem 7.36

The conduction electrons can be treated as an ordinary ideal gas as long as the 1 in the
denominator of the Fermi-Dirac distribution is negligible compared to the exponential
function, e“~#/*T for all € in the conduction band. This is the same as saying that
€—u > kT for all € in the conduction band, so a sufficient condition is ¢, — x> k7. In
the limit T — 0 this condition definitely holds, since €, — y goes to a nonzero constant,
I/2, in this limit. Note also that e, — u is at least this large at any temperature;
furthermore, from the graph in part (a) we see that e. — p is at least four times
greater than kT over the entire range of temperatures plotted. This range includes
room temperature, at which k7" = 0.026 eV so kT'/I = 0.026/0.044 = 0.59; at this
temperature, ¢, — p is slightly greater than 31, about 5 times greater than kT'. Since
e’ ~ 150, approximating the Fermi-Dirac distribution by the Boltzmann distribution
within the conduction band should be accurate to about the 1% level.

At temperatures around room temperature or lower, the number of valence electrons
excited to the conduction band will be quite negligible compared to the number from
donor ions, as discussed in part (a). (Actually, the number is even less than in a pure
semiconductor, since the chemical potential is considerably higher in this case, imply-
ing that occupancies in the valence band are even closer to 1.) At higher temperatures,
though, the number of conduction electrons from donor impurities saturates at 1017
per cm®, while the number excited from the valence band continues to rise. At what
temperature will this number equal 107 per cm?? To make a crude estimate, let’s go
back to the simplified model of a pure semiconductor used in Problem 7.33. There
we calculated that at room temperature, pure silicon contains about 10'° conduction
electrons per em®. If we double the temperature to 600 K, the exponential factor
increases to
e~ 8/%*T = 9.3 x 1075,

about 40,000 times greater than at 300 K. The quantum volume also decreases by
a factor of 2%/2 = 2.8, the combined effect is to increase the density of conduction
electrons by only a factor of about 10°. At 900 K, however, the exponential factor
increases to 8.1 x 10~*, greater than at 300 K by a factor of 1.5 x 10°. Factor in the
decrease in the quantum volume, (900/300)%2 = 5.2, and we obtain an increase in the
number of conduction electrons by a factor of nearly 107, as desired. Of course, all
this assumes that the chemical potential is at the midpoint between the valence and
conduction bands. In a doped semiconductor, as we've just seen, the chemical potential
is considerably higher at relatively low temperatures. But for our phosphorus-in-silicon
example, a temperature of 900 K implies kT/I = 1.76, at which the chemical potential
should drop below ¢, by more than 12 times the ionization energy (extrapolating from
the graph in part (a)). That puts u pretty near the center of the band gap, as needed.

Problem 7.36. (Magnetization of a degenerate Fermi gas.)

(a) In the paramagnetic systems studied in Chapters 3 and 6, every elementary dipole was

free to flip its spin from up to down—there were no restrictions from states already
being occupied. But in a degenerate Fermi gas, most electrons can’t flip from one
spin alignment to the other, because the state with opposite spin alignment is already
occupied by another electron. Only near the Fermi energy are there a significant
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