CHAPTER I

Chapter I PROBLEMS

- 1. (a) Q = {(B,W), (B,G), (G,W), (G,G)}. The sample space contains four outcomes; an outcome itself is a 2-tuple where the first component represents the result of drawing from urn one and the second component from urn two.
 - (b) The event space is the collection all subsets of the sample space. There are 16 such subsets.

- (c) 1/4
- (d) 0
- 2. (a) There are many ways to describe the outcomes of this experiment.

 For example, one could number the balls in urn one as 1, 2, 3 red;

 4, 5 white; and 6 blue and those in urn two as 1 red, 2, 3 white;

 and 4, 5, 6 blue.
 - (1) Then $\Omega = \{(i_1,i_2): i_1 = 1, \ldots, 6 \text{ and } i_2 = 1,\ldots, 6, \text{ where} \\ i_1 \text{ is the number on the ball drawn from urn 1 and} \\ i_2 \text{ is the number on the ball drawn from urn 2.} \}$

Note that there are 36 outcomes of this experiment.

(ii) Let A denote the event both balls are red,
B denote the event both balls are white, and
C denote the event both balls are blue.

Then P[both balls same color] = P[AUBUC] = P[A] + P[B] + P[C] =

$$\frac{3}{36} + \frac{4}{36} + \frac{3}{36}$$
.

(111) $P[A] = \frac{3}{36} < \frac{4}{36} = P[B].$

(b) (i)
$$\frac{12 \cdot \theta \cdot 4}{12^3}$$
 (ii) $\frac{12 \cdot \theta \cdot 4}{12 \cdot 11 \cdot 10}$

CHAPTER III

Where that $\int_{100}^{10} d_j = 0$, hence it suffices to show that the first few d_j 's

are positive, and the remaining are negative. But $d_{\frac{1}{2}} \ge 0$ if and only if 1 1 m log $(q_2/q_1)/\log(p_1q_2/p_2q_1)$.

(Use the result of Problem 28 for an alternate proof.)

and the binomial can in turn be approximated by the normal which gives a numeriasl asswer of approximately 1 - 0(2) = .0228

- Let X denote the number of defectives in the sample. Assume that X has binomial distribution.
 - (a) $P[X=1] = 1 P[X = 0] = 1 (.99)^{10}$
 - (b) Want P[X 2 1] = .95; or, want P[X = 0] = .05; 1.e., (.9) a.05, or, n = 29.
- 15. $\mathbf{p} + \mathbf{e}[\mathbf{e}(\frac{\mathbf{a}-\mathbf{p}}{a}) \mathbf{e}(\frac{\mathbf{b}-\mathbf{p}}{a})]/[\mathbf{e}(\frac{\mathbf{b}-\mathbf{p}}{a}) \mathbf{e}(\frac{\mathbf{a}-\mathbf{p}}{a})]$
- 17. There is a misprint in this problem. The mean was intended to be 200 rather than

f[f=150] 2 .90, or, $e(\frac{50}{a})$ 2 .90, which implies a $\approx 50/1.282 \approx 39$.

19. (a)
$$\xi(x) = \int_{0}^{\pi} s^{-2} x^{2} \exp[-(1/2)(x/\beta)^{2}] dx$$

• $(1/2)\sqrt{2\pi} s^{-1} \int_{0}^{\pi} x(1/\beta\sqrt{2\pi}) \exp[-(1/2)(x/\beta)^{2}] dx$

= $8\sqrt{2\pi}/2$ by recognizing that the last integral is the variance of a normal distribution with mean 0 and variance $\hat{\boldsymbol{\beta}}^2$, which shows how a little knowledge of probability can be an aid to integration.

$$var[X] = g^2(4-\pi)/2$$

28. Assume true and differentiate both sides with respect to p to obtain the equality: $\sum_{j=k}^{n} j \binom{n}{j} p^{j-1} q^{n-j} - \sum_{j=k}^{n} (n-j) \binom{n}{j} p^{j} q^{n-j-1} = k \binom{n}{k} p^{k-1} q^{n-k}.$ The inequality is verified by noting the (j+1)st term of the first sum cancels the jth term of the second sum. Work backwards.

29. Let X . f of successes in first n Bernoulli trials and Y = # of failures prior to rth success. Note that $\{X \le r-1\} \in \{Y \ge n-r\}$ hence $\Gamma_v(r-1) = P[X \le r-1] = P[Y \ge n-r] = 1 - \Gamma_v(n-r)$, 30: $\xi[z,] = (\xi[v^{\lambda}] - \xi[1-v)^{\lambda}])/\lambda = 0$ for $\lambda > -1$.

30.
$$\xi[Z_{\lambda}] = \{\xi[U'] - \xi[1-U)'] / \lambda = 0$$
 for $\lambda > -1$.
 $\xi[Z_{\lambda}^{2}] = \{\xi[U^{2\lambda}] - 2\xi[U^{\lambda}(1-U)^{\lambda}] + \xi[(1-U)^{2\lambda}] / \lambda^{2}$
 $= (2/\lambda^{2})\{[1/(2\lambda+1)] - B(\lambda+1, \lambda+1)\}$ for $\lambda > -\frac{1}{2}$.
 $\xi[Z_{\lambda}^{2}] = 0$ for $\lambda > -1/3$.

 $\xi[Z_{\lambda}^{k_{0}}] = (2/\lambda^{k_{0}}) \{[1/(4\lambda+1) - 4B(3\lambda+1, \lambda+1) + 3B(2\lambda+1, 2\lambda+1)]\}$ for $\lambda > -k$. The last part is misstated. The intent was to get two different A's, say λ_1 and λ_2 , such that \mathbf{Z}_{λ_1} and \mathbf{Z}_{λ_2} have the same skewness and kurtosis. If $\lambda_{\frac{1}{2}}$ and $\lambda_{\frac{1}{2}}$ are sought so that $Z_{\frac{1}{2}}$ and $Z_{\frac{1}{2}}$ have kurtonia equal to zero. then $\lambda_1 \approx .135$ and $\lambda_2 \approx 5.20$ will work.

solutions-manual-of-introduction-to-the-theory-of-statistics-by-mood-graybill-1st-edition/

80. (a) P(X=x, Y=y) =
$$\frac{\binom{4}{x}\binom{4}{y}\binom{4}{6-x-y}}{\binom{52}{6}}$$
.

26. (a) (26 - 9x)/(9 - 3x)

43.
$$n_{Y|X=X}(z) = \xi[e^{zY}|X=X], \quad n_{Y}(z) = \xi[e^{zY}] = \xi[\xi[e^{zY}|X]] = \xi[n_{Y|X}(z)].$$

48. (b) 1 (c)
$$\rho_{X_0Y} = 1/2$$
 (d) $f_{X}(x)f_{Y}(y)$

44. (a)
$$f(Y) = f(f(Y|X)) + f(X+1/2) = 1$$

(a) 1/4.

45. Special case of Problem 46.

The joint density of X and Y might have two, three, or four mass points. Consider the case of four mass points. Let $p_{ij} = P[X=x_i; Y=y_j]$ for i, j = 1, 2, where

$$H_1 < H_2 \text{ and } y_1 < y_2$$
.

Write $p_1 = p_{11} + p_{12} = P[X=x_1],$

Let $U = (X-x_1)/(x_2-x_1)$ and $V = (Y-y_1)/(y_2-y_1)$.

Now cov[X,Y] = 0 if and only if cov[U,V] = 0 and X and Y are independent if and only if U and V are independent.

cov[U,V] = 0 implies p₂₂ = p₂.p_{.2} which in turn implies independence.

CHAPTER V

19

Chapter V PROBLEMS

1. (a) $cov(x_1 + x_2, x_2 + x_3) = \sigma^2$; $var(x_1 + x_2) = var(x_2 + x_3) = 2\sigma^2$; hence $\rho[X_1 + X_2, X_2 + X_3] = 1/2$.

(b)
$$(a_2^2 - a_1^2)/(a_1^2 + a_2^2)$$
.

(c) 1/2.

3. $F(x)I_{\{0,\infty\}}(x)$. 4. (a) $P[X = x] = \frac{(H-K)_{K-1}}{(H)_{K-1}} \cdot \frac{K}{H-X+1}$ for $K = 1, \dots, H-K+1$.

(b)
$$P[Z = z] = \frac{\binom{K}{r-1}\binom{H-K}{z-r}}{\binom{H}{z-1}} \cdot \binom{\binom{K-r+1}{1}}{\binom{H-z+1}{1}}$$
 for $z \in r, \dots, M-K+r$.

(c)
$$\frac{(x,y)}{f_{\chi,\gamma}(x,y)} = \frac{(1,2)}{5} \cdot \frac{(1,3)}{4} = \frac{(2,1)}{5} \cdot \frac{(3,1)}{4} = \frac{(4,1)}{5} \cdot \frac{2}{4} \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{2}{3} = \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3}$$

5. According to the definition of expection, $\xi[x_1]$ does not exist; however, there is no harm in maying $\xi[x_1] = \infty$, $\xi[x_1] = n/(n-1)$ for n > 1.

6. (a) Since $X \leq \max[X,Y]$, $\xi[X] \leq \xi[\max[X,Y]]$; similarly, $\xi[Y] \le \xi[\max[X,Y]], \text{ hence } \max[\xi[X], \xi[Y]] \le \xi[\max[X,Y]].$

(b) $\max[X,Y] + \min[X,Y] = X + Y$.

7. (a) Note that X and Y are independent and uniformly distributed. Apply the corollary of Theorem 3 on page 180.

(b) Theorem 8 will do it.

8. The cdf of Z = max[X,Y] is given by

$$(1-e^{-\lambda_1 z})(1-e^{-\lambda_2 z})I_{(0,+)}(z)$$

so
$$\xi[z] = \xi[\max[x, y]] = \int_0^1 (1 - F_z(z)) dz = \int_0^1 (e^{-\lambda_1 z} + e^{-\lambda_2 z} - e^{-(\lambda_1 + \lambda_2)z}) dz = \frac{1}{\lambda_1} + \frac{1}{\lambda_2} - \frac{1}{\lambda_1 + \lambda_2}$$

9. $x_2 - x_1 \sim N(0,2)$. The distribution of $(x_2 - x_1)^2$ can be found using Example 19. Similarly for $Y_2 - Y_1$ and $(Y_2 - Y_1)^2$. They are independent so use Equation (26) to find the distribution of $Z^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$.

28

CHAPTER VI

- 23. Don't forget that Z_1+Z_2 and Z_2-Z_1 are independent! Similarly for X_1+X_2 and X_2-X_1 .
 - (b) t-distribution with 2 degrees of freedom.
 - (c) Chi-square with 3 degrees of fraedom.
 - (d) F distribution with 1 and 1 degrees of freedom.
- 25. Note that X_1 and X_2 are independent and identically distributed chi-square random variables with 2 degrees of freedom, so X_1/X_2 has an F distribution with 2 and 2 degrees of freedom.
- 27. U~H(μ,1/Γ(1/σ²_j))
 V = Γ(X_I-U)²/σ²_i = Γ(X_I-μ)²/σ²_i (U-μ)²Γ(1/σ²_j) which is a difference of two independent chi-square distributed r.v.'s, the first with n degrees of freedom, the second with 1 degree of freedom. The result follows using the moment generating function technique. What result does this reduce to if all σ²_j are equal?
- 29. The joint distribution of $(\bar{x}, \mathcal{G}_1^2, \mathcal{G}_2^2)$ is easily obtained since they are independent. Make a transformation and integrate out the unwanted variable.
- 30. One could use Theorem 13. On the other hand, note that $Y_2 Y_1 = |X_1 X_2|$ and the distribution of $X_1 X_2$ is known and it is easy to find the distribution of the absolute value of a random variable.
- 31. (a) 1 P[both less than median] = 3/4.
 - (b) $1 P[all are less than median] = 1 (1/2)^n$
- 12. $\ell(\Gamma(Y_1))$ is wanted. $\Gamma(Y_1)$ has the same distribution as the smallest observation of a random sample of size n from a uniform distribution over the interval (0,1).
- 33. $f[Y_1] = \mu [(n-1)/(n+1)]/3 \sigma$ $f[Y_n] = \mu + [(n-1)/(n+1)]/3 \sigma$ $var[Y_1] = var[Y_n] = 12\sigma^2 n/[(n+1)^2(n+2)].$ $cov[Y_1,Y_n] = 12\sigma^2/[(n+1)^2(n+2)].$

Download full file from buklibry.com

- (a) $f[Y_n Y_1] = [(n-1)/(n+1)]2\sqrt{3} \sigma$. $var[Y_n - Y_1] = 24\sigma^2(n-1)/[(n+1)^2(n+2)]$.
- (b) $\{[(Y_1 + Y_n)/2] = \mu.$ $var[(Y_1 + Y_n)/2] = 6\sigma^2/[(n+1)(n+2)]$
- (c) f[Yk+1] = u.

 $var[Y_{k+1}] = 3\sigma^2/(2k+3).$ (d) $\frac{3\sigma^2}{n+2} > \frac{\sigma^2}{n} > \frac{6\sigma^2}{(n+1)(n+2)}$ for n > 2.

- 34. \tilde{X} is asymptotically normally distributed with mean α and variance $2\beta^2/n$. The sample median is asymptotically normally distributed with mean α and variance β^2/n by Theorem 14. Note that the sample median has the smaller asymptotic variance.
- 35. $P[(Y_n a_n)/b_n \le y] = P[Y_n \le b_n y + a_n] = \{1 \exp[(b_n y a_n)/(1 b_n y a_n)]\}^n = \{1 \exp[\frac{y + (\log n)^2}{y \log n}]\}^n$. Now let n + n = 0 exp $(-e^{-y})$ results.
- 36. (a) Similar to Problem 34.
 - (b) With 0 replacing λ choose $a_{_{\rm D}}$ and $b_{_{1\lambda}}$ as in Example 9.
 - (c) We know that $Y_1^{(n)}$ has exact distribution that is exponential with parameter nl. So choose $a_n \equiv 0$ and $b_n = 1/n$ and then $(Y_1^{(n)} a_n)/b_n$ has exact (and hence also limiting) distribution that is exponential with parameter λ .

https://buklibry.com/download/solutions-manual-of-introduction-to-the-theory-of-statistics-by-mood-graybill-1stredition/

40

CHAPTER VIII

- 9. (-2.09, 2.84) for a known and (-1.94, 2.69) for a unknown.
- 10. (b) Use X 1.6455.
- 11. Use $Q = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (x_{1j} \bar{x}_{1})^2/\sigma^2$ as your pivotal quantity. $Q \sim \text{chi-square}$ with 23 degrees of freedom.
- 12. Use $\frac{\left(\frac{1}{1}(x_1-\bar{x})^2/\sigma_1^2\right)/(m-1)}{\left(\frac{1}{1}(x_1-\bar{y})^2/\sigma_2^2\right)/(m-1)} \sim F(m-1,m-1) \text{ as a pivotal quantity.}$
- 13. Want $P[2t\delta/\sqrt{20} < \sigma]$ where t is the $(1-\gamma)/2$ the quantile of a t-distribution with 19 degrees of freedom. Write $P[2t\delta/\sqrt{20} < \sigma] = P[(19)\delta^2/\sigma^2 < 19(20)/4t^2]$, where $(19)\delta^2/\sigma^2$ is chi-square distributed with 19 degrees of freedom, to complete the calculations for any γ .
- 14. (a) $2z\sigma/\sqrt{n}$ where z is the $(1+\gamma)/2$ quantile of a standard normal.
 - (b) 2t (S)/√n where t is the (1+γ)/2 quantile of a t-distribution with n-1 degrees bf freedom. See Problem 17 of Chapter VI for E[S].
- 16. Want P[2t S/\sqrt{n} < $\sigma/5$] \approx .95 where t is .95th quantile of a t-distribution with n-1 degrees of freedom. Rewrite as P[(n-1) S^2/σ^2 < (n-1)n/100t 2]. Want the minimum n such that (n-1)n \geq 100t 2 .95,n-1 2 .95,n-1. n a little over 300 seems to work.
- 18. Use Equation (10). (1.47, 10.03)
- 19. The first "the" should be "a". Use $Q = -E \log F(X_i;\theta) = -(1/\theta)E \log X_i$ as a pivotal quantity.
- 20. Use the statistical method and $\mathbf{E}\mathbf{X}_i$ as a statistic.
- 21. $[(Y_1 + Y_2)/2] 0$ is a good pivotal quantity.
- 28. The sample size seems large enough to use Equation (18) of Example 8. .4375 + .0408 for 90%.
- 25. The UNVUE of $\tau(0)$ is a linear function of \bar{x} and S. \bar{x} and S are independent and have large sample normal distributions. Hence the large sample distribution of the UNVUE (or MLE) of $\tau(0)$ is normally distributed. Use this to get an approximate confidence intreval.

Download full file from buklibry.com

26. Similar to Example 9.

gamma (k,1) as a pivotal quantity.

- 27. The posterior distribution is given in the solution of Problem 45 of Chapter VII.
 Use it and Equation 21.
- 28. The likelihood function is the joint distribution of Y1,...,Yk looked at as a function of 8. L(8;y1,...,yk) = \frac{n1}{(n-k)1} \text{ } \text{