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IV. Hilbert Space Methods and Limit Theorems in Probability Theory 95

(1) Use Problem III-2 to show that the distribution of Y is independent of
v.

(2) From now on, assume that the {X;}7_, are independent, with the same
distribution p and with Fourier transform exp(—‘—:—). Show, using Problem
III-1, that u must be invariant under every orthogonal matriz.

(8) If a € R, compute the integral

I(a) = \/%_ﬂ /_:oexp [—% ($2 + g—;)] dz

by using the following fact from Problem II-12(1):

+o0 +o00
/ f (:r lo l) dz = f(y)dy for every f integrable on R.

—00 —00

(4) By first conditioning with respect to Xo (see Problem IV-34), compute
the Fourier transform of the distribution of Y.

(5) Using Problem IV-11, find the distribution of |Y||2. Derive the density
of Y from this, by observing that the distribution of Y is invariant under
every orthogonal matriz in O4 and using Problem III-3.

SOLUTION. (1) By Problem III-2(4), if U = (UO, ,Ug) is a random vari-
able concentrated on the unit sphere Sy of R4+ lndependent of || X|| and
with rotation-invariant distribution o, then X and U||X || have the same dis-
tribution. Hence Y and (%t, %g, ce %g) have the same distribution, which
proves the result

(2) Elexp(i ¢ -__0 t; X;)] = exp(— |]|?). Problem III-1 gives the result.

(3) Set f(y) = exp( 1’—) Then

f (z - L;l) =etlalexp (——% <a:2 + i—i)) .

Hence I(a) = e~!ol1(0) = e~lal.

o 2l o () )

But, by (2),
X ks
E[exp(;l:tjx)lx} p( 2X2>

Using (3), the Fourier transform of the distribution of Y is thus exp(—||¢|)).

Ii
-
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IV. Hilbert Space Methods and Limit Theorems in Probability Theory 125

sub-o-algebra C of A. Prove that if D is the o-algebra generated by BUC,
then

E(X|D] = E[X|B].

METHOD. Prove the assertion first for square integrable X.

SoLUTION. If X € L?(.A), we must show that Y = X — E(X|B) is or-
thogonal not only to the subspace L?(B) of L%(.A) but also to L%(D). For
this, it suffices to show that Y is orthogonal to a dense subspace of L?(D).
Since D is generated by {BNC : B € B and C € C}, a dense subspace of
L?(D) is clearly formed by the set of those Z € D for which there exist (i)
a B-measurable partition (By,...,By,) of Q, (ii) a C-measurable partition
(C1,...,Cm) of Q, and (iii) (a;;)%, %, such that Z = 3°, . ai1p,1c;. It
remains to show that E(Y Z) = 0. But

EYZ] = Y ayEI(X - E(X|B))1s1c)
S aE[(X — E(X|B))15,]P(Cj],

i,J

since Y is independent of C. By definition, E(Y1pg,) = 0. Hence E(Y Z) = 0.

Il

Problem IV-36. If X and Y are integrable random variables such that
EX|Y] =Y and E[Y|X] = X, show that X =Y a.s.

METHOD. Show that, for fixed z,
(%) 0< / (X-Y)dP = (Y — X)dP,
{Y<z<X} {z<Xx and z<Y}

and conclude by symmetry that both sides of the equation are zero. Then
use Problem I-13.

SoLUTION. Since E[X|X] = X, we can write E[X — Y|X] = 0; thus, for
every Borel set A of R,

(i4) / (X —¥)dP = 0.
XeA
Setting A={X >z} ={Y <z < X}U{z < X and 2z < Y}, (ii) implies

(i). The positivity of the left-hand side is clear. Interchanging the roles of
X and Y, the same reasoning gives

os/ (X - Y)dP.
{z<X and z<Y}
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136 V. Gaussian Sobolev Spaces and Stochastic Calculus of Variations

This is the desired formula, since C¥ + Ck~1 = Ck_ |

(3) (exp(td))(p)(x) = Zn—O n,(p(") (z) = ¢(t + z) by Taylor’s formula. It
follows from (2) that

I

(exp t(d + p))(p)(z) (d+p)"

'T

(n—k)
E ().
o (n— k)'

But, by the definition of the F}, and formula V-1.4.2,

o tk t2
Z 75 Fk(z) = exp [— + t:c] .
k=0 k! 2

Thus, using the formula for the Cauchy product of two power series,

(Z%’:Fk(/’)) (Z—w“"(@)
n=0

= (exp(-t2i + tp)Tt) El )O(x)

(exp t(d+ p))(p)(z)

In particular, if A = 1 then p(¢) = z¢(z) and

(expt(d+ 2)(9)(a) = exp(’s + t2)p(t + 2).

REMARK. The result of (2) is due to Viskov!; that of (3) is due to Ville?.

Problem V-4. Let X and Y be independent random variables with the
same distribution vy (dz) = exp(-%i)“/i—%. Let g : R — [0,4+00) be a mea-
surable function and let Z = X +Y+/g(X). Assume that Z has a normal
distribution. Cantelli conjectured in 1917 that g is then constant almost
everywhere; this is still unproved in 199/.

(1) Let go = E(9(X)). For all real t, compute E(exp tZ) as a function of
go. Prove that exp(ag) € L%(v;) for all a > 0.

METHOD. Use the Schwarz inequality.

(2) Let {gn}2 be the sequence of real numbers such that g(z) = Y ooy gnil;;sﬂ
in the L?(v1) sense. By considering E(Z3) and E(Z*), show that g, = 0

and —2g2 =Y >7 %

n=2 n!"*

0. Viskov, Theory of Probability and Its Applications, Vol. 30, n. 1 (1984),
141-143.

2J. Ville, Comptes Rendus Acad. des Sc. 221 (1945), 529-539.
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