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IV. Hilbert Space Methods and Limit Theorems in Probability Theory 95 

(1) Use Problem III-2 to show that the distribution of Y is independent of 
11. 

(2) From now on, assume that the {Xj}j=o are independent, with the same 

distribution J1, and with Fourier transform exp( -~). Show, using Problem 
III-l, that J1, must be invariant under every orthogonal matrix. 
(B) If a E R, compute the integral 

I(a) = ~1:00 
exp [-~ (x2 + ::)] dx 

by using the following fact from Problem II-12(1): 

1:00 
f (x - 1:1) dx = 1:00 

f(y)dy for every f integrable on R. 

(4) By first conditioning with respect to Xo (see Problem IV-B4), compute 
the Fourier transform of the distribution of Y. 
(5) Using Problem IV-ll, find the distribution of 11Y1I2. Derive the density 
of Y from this, by observing that the distribution of Y is invariant under 
every orthogonal matrix in Od and using Problem III-B. 

SOLUTION. (1) By Problem III-2(4), if U = (Uo, ... , Ud ) is a random vari­
able concentrated on the unit sphere Sd of Rd+l, independent of IIXII and 
with rotation-invariant distribution (1, then X and UIIXII have the same dis­
tribution. Hence Y and (g;, &, ... , ~) have the same distribution, which 
proves the result. 
(2) E[exp(iL:~=otjXj)l = exp(-~lItI12). Problem III-I gives the result. 

(3) Set f(y) = vk exp( -V;). Then 

f (x - 1:1) = e+1al exp (-~ (X2 + ::)). 

Hence I(a) = e-1aII(O) = e- 1al . 

But, by (2), 

Using (3), the Fourier transform of the distribution of Y is thus exp( -lltll). 
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IV. Hilbert Space Methods and Limit Theorems in Probability Theory 125 

sub-a-algebra C of A. Prove that if V is the a-algebra generated by 8 UC, 
then 

E[XJV] = E[XJ8]. 

METHOD. Prove the assertion first for square integrable X. 

SOLUTION. If X E L2(A), we must show that Y = X - E(XJB) is or­
thogonal not only to the subspace L2(8) of L2(A) but also to L2(V). For 
this, it suffices to show that Y is orthogonal to a dense subspace of L2(V). 
Since V is generated by {B n G : B E 8 and G E C}, a dense subspace of 
L2(V) is clearly formed by the set of those Z E V for which there exist (i) 
a 8-measurable partition (Bl, ... , Bn) of n, (ii) a C-measurable partition 
(Gl , ... ,Gm ) of n, and (iii) (aij)f=lj!:l such that Z = Li,j aijlB,lC;- It 
remains to show that E(Y Z) = O. But 

E[YZ] ~::=aijE[(X - E(XJB))IB,lc;] 
i,j 

LaijE[(X - E(XJB))lBJP[Gj ], 
i,j 

since Y is independent ofC. By definition, E(YIB,) = O. HenceE(YZ) = O. 

Problem IV -36. If X and Y are integrable random variables such that 
E[XJY] = Y and E[YJX] = X, show that X = Y a.s. 

METHOD. Show that, for fixed x, 

( i) 0::; { (X - Y)dP = { (Y - X)dP, 
J{Y$z$X} J{z<x and z<Y} 

and conclude by symmetry that both sides of the equation are zero. Then 
use Problem 1-13. 

SOLUTION. Since E[XJX] = X, we can write E[X - YJX] = OJ thus, for 
every Borel set A of R, 

( ii) { (X - Y)dP = o. 
JXEA 

Setting A = {X > x} = {Y ::; x < X} U {x < X and x < Y}, (ii) implies 
(i). The positivity of the left-hand side is clear. Interchanging the roles of 
X and Y, the same reasoning gives 

0::; { (X - Y)dP. 
J{z<x and z<Y} 
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136 V. Gaussian Sobolev Spaces and Stochastic Calculus of Variations 

This is the desired formula, since C~ + C~-l = C~+l' 
(3) (exp(td))(c,o)(x) = 2::=0 ~c,o(n)(x) = c,o(t + x) by Taylor's formula. It 
follows from (2) that 

(exp t(d + p))(c,o)(x) 

But, by the definition of the Fk and formula V-1.4.2, 

f:~Fk(X)=exp[t; +tx]. 
k=O 

Thus, using the formula for the Cauchy product of two power series, 

( 00 t k ) (00 tn ) (exp t(d+p))(c,o)(x) = ~k!Fk(P) ~n!c,o(n)(x) 

= (exp(~ + tP)Tt) (c,o)(x). 

In particular, if A = 1 then p(c,o) = xc,o(x) and 

t2 
(expt(d + x))(c,o)(x) = exp( '2 + tx)c,o(t + x). 

REMARK. The result of (2) is due to Viskov1 ; that of (3) is due to Ville2. 

Problem V -4. Let X and Y be independent mndom variables with the 
same distribution v1(dx) = exp(-X;)~. Let g: R -. [0,+00) be a mea-

sumble function and let Z = X + Y Jg(X). Assume that Z has a normal 
distribution. Cantelli conjectured in 1917 that 9 is then constant almost 
everywhere; this is still unproved in 1994. 
(1) Let 90 = E(g(X)). For all real t, compute E(exp tZ) as a function of 
go. Prove that exp(ag) E L2(vd for all a> O. 
METHOD. Use the Schwarz inequality. 

(2) Let {gn}~=o be the sequence of real numbers such thatg(x) = 2::=0 gn H;.\x) 
in the L2(V1) sense. By considering E(Z3) and E(Z4), show that gl = 0 

00 92 
and - 2g2 = 2:n=2 ':i't. 

10. Viskov, Theory of Probability and Its Applications, Vol. 30, n. 1 (1984), 
141-143. 

2J. Ville, Comptes Rendus Acad. des Sc. 221 (1945), 529-539. 
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