Contents

Chapter 1 1
Chapter 2 44
Chapter 3 61
Chapter 4 81
Chapter 5 120
Chapter 6 138
Chapter 7 170
Chapter 8 185
Chapter 9 199
Chapter 10 211
$\left[\begin{array}{rrr|rrr}1 & -3 & 4 & -1 & 0 & 0 \\ 0 & 1 & -\frac{7}{10} & \frac{1}{5} & \frac{1}{10} & 0 \\ 0 & -10 & 7 & -4 & 0 & 1\end{array}\right]$
Add 10 times the second row to the third.
$\left[\begin{array}{rrr|rrr}1 & -3 & 4 & -1 & 0 & 0 \\ 0 & 1 & -\frac{7}{10} & \frac{1}{5} & \frac{1}{10} & 0 \\ 0 & 0 & 0 & -2 & 1 & 1\end{array}\right]$
Since there is a row of zeros on the left side,
$\left[\begin{array}{rrr}-1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9\end{array}\right]$ is not invertible.
17. $\left[\begin{array}{lll|lll}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

Add -1 times the first row to the third.
$\left[\begin{array}{rrr|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 & 0 & 1\end{array}\right]$
Add -1 times the second row to the third.
$\left[\begin{array}{rrr|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -2 & -1 & -1 & 1\end{array}\right]$
Multiply the third row by $-\frac{1}{2}$.
$\left[\begin{array}{rrr|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\end{array}\right]$
Add - 1 times the third row to both the first and second rows.
$\left[\begin{array}{rrr|rrr}1 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]^{-1}=\left[\begin{array}{rrr}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\end{array}\right]$
19. $\left[\begin{array}{lll|lll}2 & 6 & 6 & 1 & 0 & 0 \\ 2 & 7 & 6 & 0 & 1 & 0 \\ 2 & 7 & 7 & 0 & 0 & 1\end{array}\right]$

Multiply the first row by $\frac{1}{2}$.
$\left[\begin{array}{lll|lll}1 & 3 & 3 & \frac{1}{2} & 0 & 0 \\ 2 & 7 & 6 & 0 & 1 & 0 \\ 2 & 7 & 7 & 0 & 0 & 1\end{array}\right]$
Add -2 times the first row to both the second and third rows.
$\left[\begin{array}{rrr|rrr}1 & 3 & 3 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & -1 & 0 & 1\end{array}\right]$
Add -1 times the second row to the third.
$\left[\begin{array}{rrr|rrr}1 & 3 & 3 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1\end{array}\right]$
Add -3 times the third row to the first.
$\left[\begin{array}{rrr|rrr}1 & 3 & 0 & \frac{1}{2} & 3 & -3 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1\end{array}\right]$
Add -3 times the second row to the first.
$\left[\begin{array}{rrr|rrr}1 & 0 & 0 & \frac{7}{2} & 0 & -3 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1\end{array}\right]$
$\left[\begin{array}{lll}2 & 6 & 6 \\ 2 & 7 & 6 \\ 2 & 7 & 7\end{array}\right]^{-1}=\left[\begin{array}{rrr}\frac{7}{2} & 0 & -3 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$
21. $\left[\begin{array}{rrrr|rrrr}2 & -4 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 2 & 12 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & -4 & -5 & 0 & 0 & 0 & 1\end{array}\right]$

Interchange the first and second rows.
$\left[\begin{array}{rrrr|rrrr}1 & 2 & 12 & 0 & 0 & 1 & 0 & 0 \\ 2 & -4 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & -4 & -5 & 0 & 0 & 0 & 1\end{array}\right]$
Add -2 times the first row to the second.
$\left[\begin{array}{rrrr|rrrr}1 & 2 & 12 & 0 & 0 & 1 & 0 & 0 \\ 0 & -8 & -24 & 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & -4 & -5 & 0 & 0 & 0 & 1\end{array}\right]$
Interchange the second and fourth rows.

$$
\left[\begin{array}{rrrr|rrrr}
1 & 2 & 12 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & -4 & -5 & 0 & 0 & 0 & 1 \\
0 & 0 & 2 & 0 & 0 & 0 & 1 & 0 \\
0 & -8 & -24 & 0 & 1 & -2 & 0 & 0
\end{array}\right]
$$

9. $\left|\begin{array}{cc}a-3 & 5 \\ -3 & a-2\end{array}\right|=(a-3)(a-2)-(5)(-3)$

$$
\begin{aligned}
& =a^{2}-5 a+6+15 \\
& =a^{2}-5 a+21
\end{aligned}
$$

11. \(\left|\begin{array}{rrr}-2 \& 1 \& 4

3 \& 5 \& -7

1 \& 6 \& 2\end{array}\right|=|\)| -2 | 1 | 4 | -2 | 1 |
| ---: | ---: | ---: | ---: | ---: |
| 3 | 5 | -7 | 3 | 5 |
| 1 | 6 | 2 | 1 | 6 |

$=[(-2)(5)(2)+(1)(-7)(1)+(4)(3)(6)]-[(4)(5)(1)+(-2)(-7)(6)+(1)(3)(2)]$
$=[-20-7+72]-[20+84+6]$

$$
=-65
$$

13. $\left|\begin{array}{rrr}3 & 0 & 0 \\ 2 & -1 & 5 \\ 1 & 9 & -4\end{array}\right|=\left|\begin{array}{rrr}3 & 0 & 0 \mid 3 r \\ 2 & -1 & 5 \\ 1 & -1 \\ 1 & 9 & -4\end{array}\right| \begin{array}{rr}1 & 9\end{array}$

$$
\begin{aligned}
& =[(3)(-1)(-4)+(0)(5)(1)+(0)(2)(9)]-[0(-1)(1)+(3)(5)(9)+(0)(2)(-4)] \\
& =12-135 \\
& =-123
\end{aligned}
$$

15. $\operatorname{det}(A)=(\lambda-2)(\lambda+4)-(-5)$

$$
\begin{aligned}
& =\lambda^{2}+2 \lambda-8+5 \\
& =\lambda^{2}+2 \lambda-3 \\
& =(\lambda-1)(\lambda+3)
\end{aligned}
$$

$\operatorname{det}(A)=0$ for $\lambda=1$ or -3 .
17. $\operatorname{det}(A)=(\lambda-1)(\lambda+1)-0=(\lambda-1)(\lambda+1)$
$\operatorname{det}(A)=0$ for $\lambda=1$ or -1 .
19. (a) $\left|\begin{array}{rrr}3 & 0 & 0 \\ 2 & -1 & 5 \\ 1 & 9 & -4\end{array}\right|=3\left|\begin{array}{rr}-1 & 5 \\ 9 & -4\end{array}\right|-0\left|\begin{array}{rr}2 & 5 \\ 1 & -4\end{array}\right|+0\left|\begin{array}{rr}2 & -1 \\ 1 & 9\end{array}\right|$

$$
\begin{aligned}
& =3(4-45) \\
& =-123
\end{aligned}
$$

(b) $\left|\begin{array}{rrr}3 & 0 & 0 \\ 2 & -1 & 5 \\ 1 & 9 & -4\end{array}\right|=3\left|\begin{array}{rr}-1 & 5 \\ 9 & -4\end{array}\right|-2\left|\begin{array}{rr}0 & 0 \\ 9 & -4\end{array}\right|+1\left|\begin{array}{rr}0 & 0 \\ -1 & 5\end{array}\right|$

$$
\begin{aligned}
& =3(4-45)-2(0-0)+(0-0) \\
& =-123
\end{aligned}
$$

(c) $\left|\begin{array}{rrr}3 & 0 & 0 \\ 2 & -1 & 5 \\ 1 & 9 & -4\end{array}\right|=-2\left|\begin{array}{rr}0 & 0 \\ 9 & -4\end{array}\right|+(-1)\left|\begin{array}{rr}3 & 0 \\ 1 & -4\end{array}\right|-5\left|\begin{array}{ll}3 & 0 \\ 1 & 9\end{array}\right|$

$$
\begin{aligned}
& =-2(0-0)-(-12-0)-5(27-0) \\
& =12-135 \\
& =-123
\end{aligned}
$$

(d) $\left[\begin{array}{ll|ll}1 & -1 & 1 & 0 \\ 3 & -1 & 0 & 1\end{array}\right]$ reduces to $\left[\begin{array}{ll|ll}1 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & -\frac{3}{2} & \frac{1}{2}\end{array}\right]$

$$
\text { so } P_{E \rightarrow B^{\prime}}=\left[\begin{array}{ll}
-\frac{1}{2} & \frac{1}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right] \text {. }
$$

$$
[\mathbf{w}]_{B^{\prime}}=P_{E \rightarrow B^{\prime}}[\mathbf{w}]_{E}
$$

$$
=\left[\begin{array}{ll}
-\frac{1}{2} & \frac{1}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{r}
3 \\
-5
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
-4 \\
-7
\end{array}\right]
$$

9. (a) $\left[\begin{array}{rrr|rrr}3 & 1 & -1 & 2 & 2 & 1 \\ 1 & 1 & 0 & 1 & -1 & 2 \\ -5 & -3 & 2 & 1 & 1 & 1\end{array}\right]$ reduces to

$$
\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 3 & 2 & \frac{5}{2} \\
0 & 1 & 0 & -2 & -3 & -\frac{1}{2} \\
0 & 0 & 1 & 5 & 1 & 6
\end{array}\right] \text { so }
$$

$$
P_{B \rightarrow B^{\prime}}=\left[\begin{array}{rrr}
3 & 2 & \frac{5}{2} \\
-2 & -3 & -\frac{1}{2} \\
5 & 1 & 6
\end{array}\right] .
$$

(b) $\left[\begin{array}{rrr|rrr}2 & 2 & 1 & 1 & 0 & 0 \\ 1 & -1 & 2 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$ reduces to
$\left[\begin{array}{rrr|rrr}1 & 0 & 0 & \frac{3}{2} & \frac{1}{2} & -\frac{5}{2} \\ 0 & 1 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{3}{2} \\ 0 & 0 & 1 & -1 & 0 & 2\end{array}\right]$ so
$P_{E \rightarrow B}=\left[\begin{array}{rrr}\frac{3}{2} & \frac{1}{2} & -\frac{5}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{3}{2} \\ -1 & 0 & 2\end{array}\right]$ where E is the
standard basis for R^{3}.

$$
\begin{aligned}
{[\mathbf{w}]_{B} } & =P_{E \rightarrow B}[\mathbf{w}]_{E} \\
& =\left[\begin{array}{rrr}
\frac{3}{2} & \frac{1}{2} & -\frac{5}{2} \\
-\frac{1}{2} & -\frac{1}{2} & \frac{3}{2} \\
-1 & 0 & 2
\end{array}\right]\left[\begin{array}{r}
-5 \\
8 \\
-5
\end{array}\right] \\
& =\left[\begin{array}{r}
9 \\
-9 \\
-5
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {[\mathbf{w}]_{B^{\prime}} }=P_{B \rightarrow B^{\prime}}[\mathbf{w}]_{B} \\
&=\left[\begin{array}{rrr}
3 & 2 & \frac{5}{2} \\
-2 & -3 & -\frac{1}{2} \\
5 & 1 & 6
\end{array}\right]\left[\begin{array}{r}
9 \\
-9 \\
-5
\end{array}\right] \\
&=\left[\begin{array}{r}
-\frac{7}{2} \\
\frac{23}{2} \\
6
\end{array}\right] \\
&\text { (c) } \left.\begin{array}{rl}
{\left[\begin{array}{rrr|rr}
3 & 1 & -1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
-5 & -3 & 2 & 0 & 0 \\
\hline
\end{array}\right] \text { reduces to }} \\
{\left[\begin{array}{rrr|rr}
1 & 0 & 0 & 1 & \frac{1}{2} \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 1 & \frac{1}{2} \\
\hline & -\frac{1}{2} \\
\hline
\end{array}\right] \text { so }} & 1
\end{array}\right] \\
&\left.\begin{array}{rl}
P_{E \rightarrow B^{\prime}} & =\left[\begin{array}{rrr}
1 & \frac{1}{2} & \frac{1}{2} \\
-1 & \frac{1}{2} & -\frac{1}{2} \\
1 & 2 & 1
\end{array}\right] . \\
& =P_{B^{\prime}}
\end{array}\right] \\
&=\left[\begin{array}{rrr}
1 & \frac{1}{2} & \frac{1}{2} \\
-1 & \frac{1}{2} & -\frac{1}{2} \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{r}
-5 \\
8 \\
-5
\end{array}\right] \\
&=\left[\begin{array}{rr}
-\frac{7}{2} \\
\frac{23}{2} \\
6
\end{array}\right]
\end{aligned}
$$

11. (a) The span of f_{1} and f_{2} is the set of all linear combinations $a \mathbf{f}_{1}+b \mathbf{f}_{2}=a \sin x+b \cos x$ and this vector can be represented by (a, b). Since $g_{1}=2 f_{1}+f_{2}$ and $g_{2}=3 f_{2}$, it is sufficient to compute $\operatorname{det}\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]=6$. Since this determinant is nonzero, \mathbf{g}_{1} and \mathbf{g}_{2} form a basis for V.
(b) Since B can be represented as $\{(1,0),(0,1)\}$
$P_{B^{\prime} \rightarrow B}=\left[\begin{array}{ll}2 & 0 \\ 1 & 3\end{array}\right]$.
(c) $\left[\begin{array}{ll|ll}2 & 0 & 1 & 0 \\ 1 & 3 & 0 & 1\end{array}\right]$ reduces to $\left[\begin{array}{rr|rr}1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{6} & \frac{1}{3}\end{array}\right]$
so $P_{B \rightarrow B^{\prime}}=\left[\begin{array}{rr}\frac{1}{2} & 0 \\ -\frac{1}{6} & \frac{1}{3}\end{array}\right]$.
12. Since B is the standard basis for R^{2},
$[T]_{B}=\left[\begin{array}{rr}\cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ}\end{array}\right]=\left[\begin{array}{rr}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$. The matrices for $P_{B \rightarrow B^{\prime}}$ and $P_{B^{\prime} \leftrightarrow B}$ are the same as in Exercise 1, so

$$
\begin{aligned}
{[T]_{B^{\prime}} } & =P_{B \rightarrow B^{\prime}}[T]_{B} P_{B^{\prime} \rightarrow B} \\
& =\left[\begin{array}{cc}
\frac{4}{11} & \frac{3}{11} \\
-\frac{1}{11} & \frac{2}{11}
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{13}{11 \sqrt{2}} & -\frac{25}{11 \sqrt{2}} \\
\frac{5}{11 \sqrt{2}} & \frac{9}{11 \sqrt{2}}
\end{array}\right] .
\end{aligned}
$$

5. $T\left(\mathbf{u}_{1}\right)=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], T\left(\mathbf{u}_{2}\right)=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $T\left(\mathbf{u}_{3}\right)=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, so $[T]_{B}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.
By inspection, $\mathbf{v}_{1}=\mathbf{u}_{1}, \mathbf{v}_{2}=\mathbf{u}_{1}+\mathbf{u}_{2}$, and $\mathbf{v}_{3}=\mathbf{u}_{1}+\mathbf{u}_{2}+\mathbf{u}_{3}$, so the transition matrix from B^{\prime} to B is $P=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$.
Thus $P_{B \rightarrow B^{\prime}}=P^{-1}=\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$ and

$$
\begin{aligned}
{[T]_{B^{\prime}} } & =P_{B \rightarrow B^{\prime}}[T]_{B} P_{B^{\prime} \rightarrow B} \\
& =\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

7. $T\left(p_{1}\right)=6+3(x+1)=9+3 x=\frac{2}{3} p_{1}+\frac{1}{2} p_{2}$, and $T\left(\mathbf{p}_{2}\right)=10+2(x+1)=12+2 x=-\frac{2}{9} \mathbf{p}_{1}+\frac{4}{3} \mathbf{p}_{2}$,
so $[T]_{B}=\left[\begin{array}{rr}\frac{2}{3} & -\frac{2}{9} \\ \frac{1}{2} & \frac{4}{3}\end{array}\right]$. $\mathbf{q}_{1}=-\frac{2}{9} \mathbf{p}_{1}+\frac{1}{3} \mathbf{p}_{2}$ and $\mathbf{q}_{2}=\frac{7}{9} \mathbf{p}_{1}-\frac{1}{6} \mathbf{p}_{2}$, so the transition matrix from B^{\prime} to B is
$P=\left[\begin{array}{rr}-\frac{2}{9} & \frac{7}{9} \\ \frac{1}{3} & -\frac{1}{6}\end{array}\right]$. Thus $P_{B \rightarrow B^{\prime}}=P^{-1}=\left[\begin{array}{ll}\frac{3}{4} & \frac{7}{2} \\ \frac{3}{2} & 1\end{array}\right]$
and $[T]_{B^{\prime}}=P_{B \rightarrow B^{\prime}}[T]_{B} P_{B^{\prime} \rightarrow B}$
$=\left[\begin{array}{ll}\frac{3}{4} & \frac{7}{2} \\ \frac{3}{2} & 1\end{array}\right]\left[\begin{array}{ll}\frac{2}{3} & -\frac{2}{9} \\ \frac{1}{2} & \frac{4}{3}\end{array}\right]\left[\begin{array}{rr}-\frac{2}{9} & \frac{7}{9} \\ \frac{1}{3} & -\frac{1}{6}\end{array}\right]$
$=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
8. (a) The matrix for T relative to the standard basis B is $[T]_{B}=\left[\begin{array}{rr}1 & -1 \\ 2 & 4\end{array}\right]$. The eigenvalues of $[T]_{B}$ are $\lambda=2$ and $\lambda=3$ with corresponding eigenvectors $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{r}1 \\ -2\end{array}\right]$.
Then for $P=\left[\begin{array}{rr}1 & 1 \\ -1 & -2\end{array}\right]$, we have
$P^{-1}=\left[\begin{array}{rr}2 & 1 \\ -1 & -1\end{array}\right]$ and $P^{-1}[T]_{B} P=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$.
Since P represents the transition matrix from the basis B^{\prime} to the standard basis B, then $B^{\prime}=\left\{\left[\begin{array}{r}1 \\ -1\end{array}\right],\left[\begin{array}{r}1 \\ -2\end{array}\right]\right\}$ is a basis for which $[T]_{B^{\prime}}$ is diagonal.
(b) The matrix for T relative to the standard basis B is $[T]_{B}=\left[\begin{array}{rr}4 & -1 \\ -3 & 1\end{array}\right]$.
The eigenvalues of $[T]_{B}$ are $\lambda=\frac{5+\sqrt{21}}{2}$ and $\lambda=\frac{5-\sqrt{21}}{2}$ with corresponding eigenvectors $\left[\begin{array}{c}\frac{-3-\sqrt{21}}{6} \\ 1\end{array}\right]$ and $\left[\begin{array}{c}\frac{-3+\sqrt{21}}{6} \\ 1\end{array}\right]$.
Then for $P=\left[\begin{array}{cc}\frac{-3-\sqrt{21}}{6} & \frac{-3+\sqrt{21}}{6} \\ 1 & 1\end{array}\right]$, we have $P^{-1}=\left[\begin{array}{ll}-\frac{3}{\sqrt{21}} & \frac{-3+\sqrt{21}}{2 \sqrt{21}} \\ \frac{3}{\sqrt{21}} & \frac{3+\sqrt{21}}{2 \sqrt{21}}\end{array}\right]$ and

9. The area of the unit square S_{0} is, of course, 1. Each of the eight similitudes $T_{1}, T_{2}, \ldots, T_{8}$ given in Equation (8) of the text has scale factor $s=\frac{1}{3}$, and so each maps the unit square onto a smaller square of area $\frac{1}{9}$. Because these eight smaller squares are nonoverlapping, their total area is $\frac{8}{9}$, which is then the area of the set S_{1}. By a similar argument, the area of the set S_{2} is $\frac{8}{9}$-th the area of the set S_{1}. Continuing the argument further, we find that the areas of $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, \ldots$, form the geometric sequence $1, \frac{8}{9},\left(\frac{8}{9}\right)^{2},\left(\frac{8}{9}\right)^{3},\left(\frac{8}{9}\right)^{4}, \ldots$. (Notice that this implies that the area of the Sierpinski carpet is 0 , since the limit of $\left(\frac{8}{9}\right)^{n}$ as n tends to infinity is 0 .)

Section 10.14

Exercise Set 10.14

1. Because $250=2 \cdot 5^{3}$ it follows from (i) that $\Pi(250)=3 \cdot 250=750$.

Because $25=5^{2}$ it follows from (ii) that $\Pi(25)=2 \cdot 25=50$.
Because $125=5^{3}$ it follows from (ii) that $\Pi(125)=2 \cdot 125=250$.
Because $30=6 \cdot 5$ it follows from (ii) that $\Pi(30)=2 \cdot 30=60$.
Because $10=2 \cdot 5$ it follows from (i) that $\Pi(10)=3 \cdot 10=30$.

