Elementary Elementary Algebra Linear APPLICATIONS VERSION TENTH OR ANTON / C

Contents

Chapter 1	1
Chapter 2	44
Chapter 3	61
Chapter 4	81
Chapter 5	120
Chapter 6	138
Chapter 7	170
Chapter 8	185
Chapter 9	199
Chapter 10	211

$$\begin{bmatrix} 1 & -3 & 4 & -1 & 0 & 0 \\ 0 & 1 & -\frac{7}{10} & \frac{1}{5} & \frac{1}{10} & 0 \\ 0 & -10 & 7 & -4 & 0 & 1 \end{bmatrix}$$

Add 10 times the second row to the third.

$$\begin{bmatrix} 1 & -3 & 4 & -1 & 0 & 0 \\ 0 & 1 & -\frac{7}{10} & \frac{1}{5} & \frac{1}{10} & 0 \\ 0 & 0 & 0 & -2 & 1 & 1 \end{bmatrix}$$

Since there is a row of zeros on the left side,

$$\begin{bmatrix} -1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9 \end{bmatrix}$$
 is not invertible.

17.
$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Add -1 times the first row to the third.

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 & 0 & 1 \end{bmatrix}$$

Add -1 times the second row to the third.

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -2 & -1 & -1 & 1 \end{bmatrix}$$

Multiply the third row by $-\frac{1}{2}$.

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

Add -1 times the third row to both the first and second rows.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

19.
$$\begin{bmatrix} 2 & 6 & 6 & 1 & 0 & 0 \\ 2 & 7 & 6 & 0 & 1 & 0 \\ 2 & 7 & 7 & 0 & 0 & 1 \end{bmatrix}$$

Multiply the first row by $\frac{1}{2}$.

$$\begin{bmatrix} 1 & 3 & 3 & \frac{1}{2} & 0 & 0 \\ 2 & 7 & 6 & 0 & 1 & 0 \\ 2 & 7 & 7 & 0 & 0 & 1 \end{bmatrix}$$

Add -2 times the first row to both the second and third rows.

$$\begin{bmatrix} 1 & 3 & 3 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & -1 & 0 & 1 \end{bmatrix}$$

Add -1 times the second row to the third.

$$\begin{bmatrix} 1 & 3 & 3 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{bmatrix}$$

Add -3 times the third row to the first.

$$\begin{bmatrix} 1 & 3 & 0 & \frac{1}{2} & 3 & -3 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{bmatrix}$$

Add -3 times the second row to the first.

$$\begin{bmatrix} 1 & 0 & 0 & \frac{7}{2} & 0 & -3 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 6 & 6 \\ 2 & 7 & 6 \\ 2 & 7 & 7 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{7}{2} & 0 & -3 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

21.
$$\begin{bmatrix} 2 & -4 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 1 & 2 & 12 & 0 & | & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & | & 0 & 0 & 1 & 0 \\ 0 & -1 & -4 & -5 & | & 0 & 0 & 0 & 1 \end{bmatrix}$$

Interchange the first and second rows.

$$\begin{bmatrix} 1 & 2 & 12 & 0 & 0 & 1 & 0 & 0 \\ 2 & -4 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & -4 & -5 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Add -2 times the first row to the second.

$$\begin{bmatrix} 1 & 2 & 12 & 0 & 0 & 1 & 0 & 0 \\ 0 & -8 & -24 & 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & -4 & -5 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Interchange the second and fourth rows.

$$\begin{bmatrix} 1 & 2 & 12 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & -4 & -5 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 & 0 & 0 & 1 & 0 \\ 0 & -8 & -24 & 0 & 1 & -2 & 0 & 0 \end{bmatrix}$$

9.
$$\begin{vmatrix} a-3 & 5 \\ -3 & a-2 \end{vmatrix} = (a-3)(a-2) - (5)(-3)$$

= $a^2 - 5a + 6 + 15$
= $a^2 - 5a + 21$

11.
$$\begin{vmatrix} -2 & 1 & 4 \\ 3 & 5 & -7 \\ 1 & 6 & 2 \end{vmatrix} = \begin{vmatrix} -2 & 1 & 4 | -2 & 1 \\ 3 & 5 & -7 | & 3 & 5 \\ 1 & 6 & 2 | & 1 & 6 \end{vmatrix}$$
$$= [(-2)(5)(2) + (1)(-7)(1) + (4)(3)(6)] - [(4)(5)(1) + (-2)(-7)(6) + (1)(3)(2)]$$
$$= [-20 - 7 + 72] - [20 + 84 + 6]$$
$$= -65$$

13.
$$\begin{vmatrix} 3 & 0 & 0 \\ 2 & -1 & 5 \\ 1 & 9 & -4 \end{vmatrix} = \begin{vmatrix} 3 & 0 & 0 & 3 & 0 \\ 2 & -1 & 5 & 2 & -1 \\ 1 & 9 & -4 & 1 & 9 \end{vmatrix}$$

$$= [(3)(-1)(-4) + (0)(5)(1) + (0)(2)(9)] - [0(-1)(1) + (3)(5)(9) + (0)(2)(-4)]$$

$$= 12 - 135$$

$$= -123$$

15.
$$\det(A) = (\lambda - 2)(\lambda + 4) - (-5)$$

 $= \lambda^2 + 2\lambda - 8 + 5$
 $= \lambda^2 + 2\lambda - 3$
 $= (\lambda - 1)(\lambda + 3)$
 $\det(A) = 0$ for $\lambda = 1$ or -3 .

17.
$$\det(A) = (\lambda - 1)(\lambda + 1) - 0 = (\lambda - 1)(\lambda + 1)$$

 $\det(A) = 0$ for $\lambda = 1$ or -1 .

19. (a)
$$\begin{vmatrix} 3 & 0 & 0 \\ 2 & -1 & 5 \\ 1 & 9 & -4 \end{vmatrix} = 3 \begin{vmatrix} -1 & 5 \\ 9 & -4 \end{vmatrix} - 0 \begin{vmatrix} 2 & 5 \\ 1 & -4 \end{vmatrix} + 0 \begin{vmatrix} 2 & -1 \\ 1 & 9 \end{vmatrix}$$
$$= 3(4 - 45)$$
$$= -123$$

(b)
$$\begin{vmatrix} 3 & 0 & 0 \\ 2 & -1 & 5 \\ 1 & 9 & -4 \end{vmatrix} = 3 \begin{vmatrix} -1 & 5 \\ 9 & -4 \end{vmatrix} - 2 \begin{vmatrix} 0 & 0 \\ 9 & -4 \end{vmatrix} + 1 \begin{vmatrix} 0 & 0 \\ -1 & 5 \end{vmatrix}$$

= 3(4-45) - 2(0-0) + (0-0)
= -123

(c)
$$\begin{vmatrix} 3 & 0 & 0 \\ 2 & -1 & 5 \\ 1 & 9 & -4 \end{vmatrix} = -2 \begin{vmatrix} 0 & 0 \\ 9 & -4 \end{vmatrix} + (-1) \begin{vmatrix} 3 & 0 \\ 1 & -4 \end{vmatrix} - 5 \begin{vmatrix} 3 & 0 \\ 1 & 9 \end{vmatrix}$$
$$= -2(0 - 0) - (-12 - 0) - 5(27 - 0)$$
$$= 12 - 135$$
$$= -123$$

(d)
$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 3 & -1 & 0 & 1 \end{bmatrix}$$
 reduces to $\begin{bmatrix} 1 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$
so $P_{E \to B'} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$.
 $[\mathbf{w}]_{B'} = P_{E \to B'}[\mathbf{w}]_E$
 $= \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 3 \\ -5 \end{bmatrix}$
 $= \begin{bmatrix} -4 \\ -7 \end{bmatrix}$

9. (a)
$$\begin{bmatrix} 3 & 1 & -1 & 2 & 2 & 1 \\ 1 & 1 & 0 & 1 & -1 & 2 \\ -5 & -3 & 2 & 1 & 1 & 1 \end{bmatrix} \text{ reduces to}$$

$$\begin{bmatrix} 1 & 0 & 0 & 3 & 2 & \frac{5}{2} \\ 0 & 1 & 0 & -2 & -3 & -\frac{1}{2} \\ 0 & 0 & 1 & 5 & 1 & 6 \end{bmatrix} \text{ so}$$

$$P_{B \to B'} = \begin{bmatrix} 3 & 2 & \frac{5}{2} \\ -2 & -3 & -\frac{1}{2} \\ 5 & 1 & 6 \end{bmatrix}.$$

(b)
$$\begin{bmatrix} 2 & 2 & 1 & 1 & 0 & 0 \\ 1 & -1 & 2 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \text{ reduces to}$$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{3}{2} & \frac{1}{2} & -\frac{5}{2} \\ 0 & 1 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{3}{2} \\ 0 & 0 & 1 & -1 & 0 & 2 \end{bmatrix} \text{ so}$$

$$P_{E \to B} = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} & -\frac{5}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{3}{2} \\ -1 & 0 & 2 \end{bmatrix} \text{ where } E \text{ is the}$$

standard basis for R^3 .

$$[\mathbf{w}]_{B} = P_{E \to B}[\mathbf{w}]_{E}$$

$$= \begin{bmatrix} \frac{3}{2} & \frac{1}{2} & -\frac{5}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{3}{2} \\ -1 & 0 & 2 \end{bmatrix} \begin{bmatrix} -5 \\ 8 \\ -5 \end{bmatrix}$$

$$= \begin{bmatrix} 9 \\ -9 \\ -5 \end{bmatrix}$$

$$[\mathbf{w}]_{B'} = P_{B \to B'}[\mathbf{w}]_{B}$$

$$= \begin{bmatrix} 3 & 2 & \frac{5}{2} \\ -2 & -3 & -\frac{1}{2} \\ 5 & 1 & 6 \end{bmatrix} \begin{bmatrix} 9 \\ -9 \\ -5 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{7}{2} \\ \frac{23}{2} \\ 6 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 3 & 1 & -1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ -5 & -3 & 2 & 0 & 0 & 1 \end{bmatrix} \text{ reduces to}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & -1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 1 & 2 & 1 \end{bmatrix} \text{ so}$$

$$P_{E \to B'} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ -1 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 2 & 1 \end{bmatrix}.$$

$$[\mathbf{w}]_{B'} = P_{E \to B'}[\mathbf{w}]_{E}$$

$$= \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ -1 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} -5 \\ 8 \\ -5 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{7}{2} \\ \frac{23}{2} \\ 6 \end{bmatrix}$$

- 11. (a) The span of \mathbf{f}_1 and \mathbf{f}_2 is the set of all linear combinations $a\mathbf{f}_1 + b\mathbf{f}_2 = a\sin x + b\cos x$ and this vector can be represented by (a, b). Since $\mathbf{g}_1 = 2\mathbf{f}_1 + \mathbf{f}_2$ and $\mathbf{g}_2 = 3\mathbf{f}_2$, it is sufficient to compute $\det \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} = 6$. Since this determinant is nonzero, \mathbf{g}_1 and \mathbf{g}_2 form a basis for V.
 - (b) Since B can be represented as $\{(1, 0), (0, 1)\}$ $P_{B' \to B} = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}.$
 - (c) $\begin{bmatrix} 2 & 0 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{bmatrix}$ reduces to $\begin{bmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{6} & \frac{1}{3} \end{bmatrix}$ so $P_{B \to B'} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{1}{6} & \frac{1}{3} \end{bmatrix}$.

3. Since B is the standard basis for R^2 .

$$[T]_B = \begin{bmatrix} \cos 45^\circ & -\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
. The

matrices for $P_{B \to B'}$ and $P_{B' \leftrightarrow B}$ are the same as in Exercise 1, so

$$\begin{split} [T]_{B'} &= P_{B \to B'} [T]_B P_{B' \to B} \\ &= \begin{bmatrix} \frac{4}{11} & \frac{3}{11} \\ -\frac{1}{11} & \frac{2}{11} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix} \\ &= \begin{bmatrix} \frac{13}{11\sqrt{2}} & -\frac{25}{11\sqrt{2}} \\ \frac{5}{11\sqrt{2}} & \frac{9}{11\sqrt{2}} \end{bmatrix}. \end{split}$$

5. $T(\mathbf{u}_1) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $T(\mathbf{u}_2) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $T(\mathbf{u}_3) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, so $[T]_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

By inspection, $\mathbf{v}_1 = \mathbf{u}_1$, $\mathbf{v}_2 = \mathbf{u}_1 + \mathbf{u}_2$, and $\mathbf{v}_3 = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3$, so the transition matrix from

$$B' \text{ to } B \text{ is } P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$
Thus $P_{B \to B'} = P^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ and

$$[T]_{B'} = P_{B \to B'}[T]_B P_{B' \to B}$$

$$= \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} .$$

7. $T(\mathbf{p}_1) = 6 + 3(x+1) = 9 + 3x = \frac{2}{3}\mathbf{p}_1 + \frac{1}{2}\mathbf{p}_2$, and $T(\mathbf{p}_2) = 10 + 2(x+1) = 12 + 2x = -\frac{2}{9}\mathbf{p}_1 + \frac{4}{3}\mathbf{p}_2$, so $[T]_B = \begin{bmatrix} \frac{2}{3} & -\frac{2}{9} \\ \frac{1}{2} & \frac{4}{3} \end{bmatrix}$. $\mathbf{q}_1 = -\frac{2}{9}\mathbf{p}_1 + \frac{1}{3}\mathbf{p}_2$ and $\mathbf{q}_2 = \frac{7}{9}\mathbf{p}_1 - \frac{1}{6}\mathbf{p}_2$, so the transition matrix from B' to B is

$$P = \begin{bmatrix} -\frac{2}{9} & \frac{7}{9} \\ \frac{1}{3} & -\frac{1}{6} \end{bmatrix}. \text{ Thus } P_{B \to B'} = P^{-1} = \begin{bmatrix} \frac{3}{4} & \frac{7}{2} \\ \frac{3}{2} & 1 \end{bmatrix}$$
and $[T]_{B'} = P_{B \to B'}[T]_{B} P_{B' \to B}$

$$= \begin{bmatrix} \frac{3}{4} & \frac{7}{2} \\ \frac{3}{2} & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{3} & -\frac{2}{9} \\ \frac{1}{2} & \frac{4}{3} \end{bmatrix} \begin{bmatrix} -\frac{2}{9} & \frac{7}{9} \\ \frac{1}{3} & -\frac{1}{6} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

- 11. (a) The matrix for T relative to the standard basis B is $[T]_B = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$. The eigenvalues of $[T]_B$ are $\lambda = 2$ and $\lambda = 3$ with corresponding eigenvectors $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

 Then for $P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$, we have $P^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$ and $P^{-1}[T]_B P = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Since P represents the transition matrix from the basis B' to the standard basis B, then $B' = \{\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix}\}$ is a basis for which $[T]_{B'}$ is diagonal.
 - (b) The matrix for T relative to the standard basis B is $[T]_B = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix}$.

 The eigenvalues of $[T]_B$ are $\lambda = \frac{5 + \sqrt{21}}{2}$ and $\lambda = \frac{5 \sqrt{21}}{2}$ with corresponding eigenvectors $\begin{bmatrix} \frac{-3 \sqrt{21}}{6} \\ 1 \end{bmatrix}$ and $\begin{bmatrix} \frac{-3 + \sqrt{21}}{6} \\ 1 \end{bmatrix}$.

 Then for $P = \begin{bmatrix} \frac{-3 \sqrt{21}}{6} & \frac{-3 + \sqrt{21}}{6} \\ 1 & 1 \end{bmatrix}$, we have $P^{-1} = \begin{bmatrix} -\frac{3}{\sqrt{21}} & \frac{-3 + \sqrt{21}}{2\sqrt{21}} \\ \frac{3}{\sqrt{21}} & \frac{3 + \sqrt{21}}{2\sqrt{21}} \end{bmatrix}$ and

12. The area of the unit square S_0 is, of course, 1. Each of the eight similitudes $T_1, T_2, ..., T_8$ given in Equation (8) of the text has scale factor $s = \frac{1}{3}$, and so each maps the unit square onto a smaller square of area $\frac{1}{9}$. Because these eight smaller squares are nonoverlapping, their total area is $\frac{8}{9}$, which is then the area of the set S_1 . By a similar argument, the area of the set S_2 is $\frac{8}{9}$ -th the area of the set S_1 . Continuing the argument further, we find that the areas of S_0 , S_1 , S_2 , S_3 , S_4 , ..., form the geometric sequence 1, $\frac{8}{9}$, $\left(\frac{8}{9}\right)^2$, $\left(\frac{8}{9}\right)^3$, $\left(\frac{8}{9}\right)^4$, (Notice that this implies that the area of the Sierpinski carpet is 0, since the limit of $\left(\frac{8}{9}\right)^n$ as n tends to infinity is 0.)

Section 10.14

Exercise Set 10.14

1. Because $250 = 2.5^3$ it follows from (i) that $\Pi(250) = 3.250 = 750$.

Because $25 = 5^2$ it follows from (ii) that $\Pi(25) = 2 \cdot 25 = 50$.

Because $125 = 5^3$ it follows from (ii) that $\Pi(125) = 2 \cdot 125 = 250$.

Because $30 = 6 \cdot 5$ it follows from (ii) that $\Pi(30) = 2 \cdot 30 = 60$.

Because $10 = 2 \cdot 5$ it follows from (i) that $\Pi(10) = 3 \cdot 10 = 30$.