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30.

Chapter 2 First-Order Equations

that y;(r) = —1 and y,(r) = 1 are both solutions
to the differential equation. If y is a solution and
satisfies y(1) = 0, then y;(1) < y(1) < »(1).
By the uniqueness theorem we must have y;(f) <
y(t) < y2(¢) for all ¢ for which y is defined. Hence
~1 < y(t) < 1 for all t for which y is defined.

Notice that x;(r) = 0 and x,(t) = 1 are solu-
tions to the same differential equation with initial
values x1(0) = 0 < 1/2 = x(0) < 1 = x(0).
The right hand side of the differential equation,
f(t,%) = (6> —x)/(1 4 1*x?), and

of  (Bx*— D1+ 1x%) —2%x(x* — x)

ax (1 4 2x2)2 ’
are both continuous on the whole plane. Conse-
quently the uniqueness theorem applies, so the solu-

tion curves for x, x, and x, cannot cross. Hence we
must have 0 = x1(f) < x(t) < x2(¢t) = 1 forall t.

31

32.

Notice that x; (¢) = 2 is a solution to the same differ-
ential equation with initial value x;(0) =0 < 1 =
x(0). The right hand side of the differential equa-
tion, f(t,x) = x —t2 42t and 3f/dx = 1 are both
continuous on the whole plane. Consequently the
uniqueness theorem applies, so the solution curves
for x and x; cannot cross. Hence we must have
12 = x1(t) < x(t) for all t.

Notice that y; (f) = cost is a solution to the same dif-
ferential equation withinitial value v, (0) = 1 < 2 =
¥(0). The right hand side of the differential equa-
tion, f(¢,y) = y*> — cos’*t — sin ¢ and 3f/dy = 2y
are both continuous on the whole plane. Conse-
quently the uniqueness theorem applies, so the so-
lution curves for y and y; cannot cross. Hence we
must have y(¢t) > y;(t) = cost for all ¢.

Section 2.8. Dependence of Solutions on Initial Conditions

1.
2.
3.

10.
11.
12.

x(0) = 0.8009
x(0) = .9084
x(0) = 0.9596
x(0) = 0.9826
x(0) = 0.7275
x(0) = 0.72897

x(0) = 0.7290106

x{0) = 0.729011125
x(0) =-3.2314

x(0) = —3.23208

x(0) = —=3.2320923
x(0) = —3.23092999999
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13.
14.

Ten! :-)

1—e" —(1/10)e!! < y(1) < 1—e™" +(1/10)e"!
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Chapter 4. Second-Order Equations

Section 4.1. Definitions and Examples

1.

94

Compare
¥y’ +3y 4+ 5y =3cos2t
with
Y +p®y +4qt)y =g,

and note that p(z) = 3, g(t) = 5, and g(t) =
3cos2t. Hence, the equation is linear and inhomo-
geneous.

Divide both sides of t>y” = 4y’ — sint by ¢2, then
rearrange to obtain

Compare this with

Y+ p@®)y +q@®)y =g@),

and note that p(t) = —4/t2, q(t) = 0, and g(t) =
—(sint)/t2. Hence, the equation is linear and inho-
mogeneous.

Expand t?y” + (1 — y)y’ = cos 2¢ to obtain
2y" +y — yy = cos2t.

Note that the term yy’ is nonlinear. Hence, this equa-
tion is nonlinear.

Divide both sides of ¢ty” + (sint)y’ = 4y — cos 5t
by t, then rearrange to obtain

sint , 4  cos5t
r ) T T T T

"

Compare this with

Y '+ p@®y +q@)y =g@),

and note that p(¢#) = (sint)/t, q(t) = —4/t, and
g(t) = —(cos5t)/t. Hence, the equation is linear
and inhomogeneous.

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.

In

tzy// + 4yy/ —_ 0’

note that the term 4yy’ is nonlinear. Hence, this
equation is nonlinear.

Compare
y' +4y + 7y =3e " sint
with
Y+ p®)y +q®)y =g,
and note that p(r) = 4, q(t) = 7, and g(t) =

3e~*sint. Hence, the equation is linear and inho-
mogeneous.

In

y' +3y +4siny =0

note that the term 4 sin y is nonlinear. Hence, this
equation is nonlinear.

Divide both sides of (1 —¢2)y” = 3y by 1 — ¢2, then
rearrange the terms to obtain

4

y._...

1_t2y=0.

Compare with
Y+ p@®)y +q@®y =g,
and note that p(t) = 0, g(t) = —3/(1 — t?), and

g(t) = 0. Hence, the equation is linear and homo-
geneous.
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144 Chapter4  Second-Order Equations

t. 21. (a) Suppose that mx” + ux’ + kx = 0 is over-
damped. We can write

k
Ml Zx=0
m m

x" 4 2ex' + 0} =0,

where 2¢ = p/m and w = k/m. The system
has characteristic equation A2 + 2cA + @3 = 0

and zeros
M =—c—./ct— o} and
0 1 t 2 3 dy=—c+./?—wf.
Note that the graph crosses the ¢-axis exactly once. If wie set y = \/c? — o, then
Finally, by picking initial conditions from the un-
shaded region, you will note that this solution also M=—c—y and Ay=—c+7,

crosses the y-axis exactly once, but at ¢t < 0.
and A —A; = 2y. If the system is overdamped,

20. (a) The system x” + ux’ + 4x = 0 has character- note that
istic equation A2 + A +4 = 0. If u = 4, this 2 3
becomes A2 + 41 +4 = (A +2)2 = 0, and ¢ —wy>0
there is one repeated root, hence the critically ( M )2 > k
damped case. 2m m
w? > dmk

(b) The critically damped solution (solid line in fig-
ure) approaches the ¢-axis faster than any of the p > 2v/mk.
other overdamped solutions.

The general solution is

25 x(t) = C1eM" + Cre'.
2
The initial condition x(0) = 0 gives 0 =
15 Ci 4+ C; and C; = —C;. Differentiating x (¢),
x
1 x'(t) = CireM! + Crrge™,
0.5 N and the initial condition x’(0) = vy provides
AES vg = C1A1+CoA,. This system is easily solved
0 for
0 2 4 6
t
C 1= Yo = ———-v—o and
An overdamped screen door will shut on its own A=A 2y
without slamming. A critically damped door Co = —V W
. . . . 2= — A
will shut as fast as possible without slamming. A=Ay 2y
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194 Chapter4 Second-Order Equations

22.

Cy = —3/5 and C, = —11/20. Therefore, the so-
lution is

3 11
y=¢€ (——5- cos 2t — 5 sinZt)

+ 3cost 3 sin ¢
5 10 ’

The homogeneous equation y” + 4y’ + 4y = 0 has
characteristic equation A2 +4A +4 = (A +2)> =0
and repeated root A = —2. Thus the homogeneous
solution is

v = (C1 + Czt)e—m.

The particular solution y, = at + b has derivatives
/

¥, = a and y; = 0, which when substituted in
Yy +4y +4y =4 —1t,
4a+4(at+b)=4—1t
4at + (4a + 4b) = —t + 4.
Comparing coefficients,

4q = —1
4a + 4b =4,

which has solution a = —1/4 and b = 5/4. Thus,
the general solution is

1 5
=(Ci+Cat)e™ — —t 4 =,
y=(Ci+ Cat)e 2ty
The initial condition y(0) = —1 provides
5
—-1=C+ Z

Differentiate.
1
y = Cre™% —2¢72(Cy + Cat) — 7
The initial condition y’(0) = 0 provides
1
0=C;—2C — 7

Thus, C; = —9/4 and C, = —17/4 and

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.

23.

24.

The homogeneous equation y” — 2y’ + y = 0 has
characteristic equation A2 — 24 + 1 = (A — 1), with
repeated zero A = 1. Thus, the homogeneous solu-
tion is

yn = (C; + Cyt)e'.

The particular solution y, = at> + bt* + ct +d has
derivatives

Y, = 3at® 4+ 2bt + ¢
y" = 6at + 2b,

which when substituted in y” — 2y’ + y = 3, rear-
ranging, yields

at’+(—6a+b)t*+(6a—4b+c)t+(2b—2c+d) = 3.
Thus,

a=1
—6a+b=0
6a—4b+c=0
2b—2c+d=0,

which has solutiona = 1, b = 6, ¢ = 18, and
d = 24. Thus, the general solution is

y = (Cy + Cat)e’ +t° + 61> + 181 + 24.

The initial condition y(0) = 1 gives 1 = C; + 24.
Differentiating,

y' = Cae' + (C1 + Cat)e' + 3t + 12t + 18.

The initial condition y’(0) = 0 gives0 = C, +C; +
18. The system has solution C; = —23 and C; = 5.
Therefore, the solution is

y = (=23 +5t)e' +1° + 612 + 18t + 24.

The homogeneous equation y” — 3y’ — 10y = 0 has
characteristic equation A2 — 31 — 10 = (A — 5)(A +
2) = 0 with zeros A; = 5 and A, = —2. Thus, the
homogeneous solution is

yn=Cie” + Cre™.

Thus, the forcing term of y” — 3y’ — 10y = 3¢ is
a solution of the homogeneous equation. Substitute
yp = Ate™ and its derivatives

y, = Ae (1 —2t)
vy = (—4—4nAe™*

No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Download full file from buklibry.com



https://buklibry.com/download/

solutions-manual-of-differential-equations-with-boundary-value-problems-by-polking-arnold-2nd-edition/

394 Chapter7 Matrix Algebra

The determinant is

|mm=ﬁﬂ=mm—W@
=1-24=-23.

Note that the determinant is the negative of the area.

4. Estimate the area by counting square units inside the
parallelogram in

The determinant is
-2 4
[vi, V2| = =(=2)3) -5
5 3
=—6—20=-26.

Note that the determinant is the negative of the area.

5. Estimate the area by counting square units inside the
parallelogram in

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.

(.5

The determinant is

Imwbg—ﬂ=@@—@E%
=30+ 10 = 40.

First note the determinant of A.

a b

lAl=1. 4

]:ad—bc.

To prove part (1), construct B by adding r times row

1 to row 2.
a b
B_(c+ra d+rb)'
Then,
a b
|Bl = c+ra d+rb|’
=a(d +rb) —b(c+ra),
=ad — bc,

= |A].

To prove part (2), craft B by swapping rows 1 and 2

of matrix A.
c d
2= 5)
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594 Chapter9 Linear Systems with Constant Coefficients

or, The solution of this systemis a; = 1/2,a;, = —1/2,

by = —1/4 — b,, where b, is free. Choosing by =

Ay, +f = (=3a1 + 6a2)t + (—3b; + 6b; + 3)) ) —1/8 provides the solution a; = 1/2, a, = —1/2,
I4 (—2a; +4ax)t + (—2b; +4by, + 4) by = —1/8, and by = —1/8, s0

Comparing coefficients of the polynomial entries _ (1/2)t —1/8 \ _
(e.g., 0 = —3a; + 6a; and a; = —3b; + 6b, + 3), yp = (at+ be™ = ((-—1/2)1‘ _ 1/8) e,
we get the following system.

which is identical to that found in Example 9.15.

a;—2a, =0
a; +3by —6by =3 18. The current coming into the node at “a” must equal
ay +2b; — 4by = 4 the current coming out of the same node. Hence,
Solving, a; = —12, ay = —6, by = 5+ 2b,, with b, i =i+ 9.16)

free. Letting b, = 0, we get a; = —12, a; = —6,

by = 5,and b, = 0, providing the particular solution Traversing (clockwise) the leftmost loop containing

emf, resistor, and inductor, Kirchoff’s voltage law

-12 5 provides
—30 + 10i 4+ 0.02i; = 0. 9.17)
17. Ify, = (ar +b)e™, then Traversing (clockwise) the outer loop containing
vy = ae~' — (at +b)e~" = [—ar + (a— b)Je”’ emf, both resistors, and the far inductor,
| = ae =

—ait + (a; — b1)> —t =30 + 10i + 20i, + 0.04i, = 0. (9.18)

- (—azt + (a2 — b2) o .
If we now subsitute i = iy + i, into equations (9.17)
Next, and (9.18), then a little algebra provides us with the

following system (in the form x’ = Ax + f).
Ay, +f=A(at +b)e™ +f

1 2\ (ait +b\ _ N il [-500 —5007Ti 1500
=<2 1) (a;t+b;)et+(o)e " [iz] "[—250 2750 |ip | F| 750 | O

_ (@1 +2a)t + (b1 +2b2 + 1)) A computer provides the following eigenvalue-
(a1 + az)t + (2b1 + by) eigenvector pairs for the coefficient matrix in equa-
Thus, tion (9.19):
1 -2

—ait + (a1 — by) —1000 —> 1 and —250 — et
—azt + (a2 — by)

_ (a1 +2a)t + (b1 +2by + 1) Hence, the homogeneous solution is

- 2a; + ax)t + (2b; + by)

_ . —1000r | 1 —250r | —2
Comparing coefficients of the polynomial entries in x=Cie [1 + Coe 1| (9.20)

these vectors (e.g., —a; = (a1 + 2a)) leads to the

system Now for a particular solution, let’s try the form
X, = (a1,a2)T. Substituting this informed guess
ai+a =0 in equation (9.19), we get
—2by —2by =1
“ o 0] _[-500 —500][ai] [1500
@ = 2b1 —2b, =0. 0| =|-250 -750||a| | 750 |
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694 Chapter 11  Series Solutions to Differential Equations

Choose y;(x) with 1 = y1(0) = ap and 0 = y{(0) = a;.

1 3 1 X (=D)"3-7 11 (4n — 5))
=1 2T 4 vee=1 — 52 2n
nO =ty gt t tax +§=:2 n)! *
Choose y,(x) with 0 = y,(0) = ap and 1 = y}(0) = a;.
_ 1, 5 5 _ 1, O (=D*(5-9-12----- @n—3) s
R S A D @n+ D! e

Note that the solutions are chosen so that

_ O »@O) _ 1 0 _
Wonom =10 20 =[5 =120

so the solutions are independent.

18. The coefficients of y’ and y are p(x) = x and g(x) = 2, both polynomials and analytic at x = 0. Thus, x = 0
is an ordinary point. According to Theorem 2.29, all solutions have radius of convergence R = co. We seek a
solution of the form y = 3 2 ) a,x" with derivatives

n=0
o0 [e¢]
Y@y = na,x"" and y'(x) = n(n— Dax".
n=1 n=2
Substituting,
oo [o¢] o0
0=y"+xy +2y= Z nin —Dax" 2 +x Z napx"1 42 Z aux"

n=2 n=1 n=0

[e'¢] [o,¢ o0
= Zn(n — Dayx" % + Znanx” + ZZanx”.
n=2 n=1 n=0

Shifting the index of the first term and noting that the second term

o0 [ee]
E na,x" = E na,x",
n=1 n=0

we write
o0 o0 o0 o0
0= Z(n +2)(n + Day2x™ + Z na,x”" + ZZanx" = Z [(n +2)(n+ Dapz + (0 + 2)an] x".
n=0 n=0 n=0 n=0

Setting coefficients equal to zero,

(1 +2)(n + Dagss + (n+2)a, =0 or an+z=n_f”l, n>0.
Thus,
t=—a, a=—-2=2 g="2_"D g gg=___ D
S T R T & T T 7153
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894 Chapter 13 Partial Differential Equations

Section 13.2. Separation of Variables for the Heat Equation

1. The thermal diffusivity of gold is k = 1.18 cm?/sec.
We will let the unit of length be centimeters, so
L = 50. The boundary conditions are u(0,7) = 0
and u(50, t) = 0, so the steady-state temperature is
0. Hence the solution is given by

o0
(1) =Y bue T sin(nmx /L),

n=1

where the coefficients are

2 L
b, = —/ 100 sin(nwx /L) dx
L Jo
= E[1 — cos(n)]
nmw

400 e s
_}5- ifnisodd,
0 if n is even.

Thus the solution is given by

—].18x(2p+1)27r2t/2500

For ¢t = 100, the term for p = 1 is bounded by 0.65.
Hence one term of the series will suffice to estimate
the temperature within 1°. Using just this one term,
we solve

ﬂe_l.lsxnzt/%oo =10
b

for t = 546 sec. Hence we see that it will take about
546 sec for the temperature to drop below 10°C. The

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.

temperature at 100 second intervals is plotted below.

1005
50
0 25 50

The thermal diffusivity of aluminum is £ =
0.84 cm?/sec. For t = 100, the term for p = 1
is bounded by 2.14, while that for p = 2 is bounded
by 0.006. Hence two terms will suffice to compute
the temperature for ¢ = 100 sec. Looking at the the
term for p = 0, we solve

@96—0‘84xn2t/2500 =10
m

for t = 767 sec. For such a time, all of the other
terms are extremely small, so we see that it will
take about 767 sec for the temperature to drop be-
low 10°C.

The thermal diffusivity of silver is k = 1.7 cm?/sec.
For t = 100, the term for p = 1 is bounded by
0.1.Hence one term will suffice to compute the tem-
perature for t = 100 sec. Looking at the the term for
p = 0, we solve

@e—l.unzz/zsoo -10
b/ 4

for t = 379sec. For such a time, all of the other
terms are extremely small, so we see that it will
take about 379 sec for the temperature to drop be-
low 10°C.
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