Instructor's Solutions Manual

JOHN POLKING

Rice University

DAVID ARNOLD

College of the Redwoods

Differential Equations With Boundary Value Problems

SECOND EDITION

POLKING

B066ESS

ARNOLD

Contents

 1	Int	roduction to Differential Equations	1
	1.1	Differential Equation Models	1
	1.2	The Derivative	2 5
	1.3	Integration	5
2	Fin	st-Order Equations	12
	2.1	Differential Equations and Solutions	12
	2.2	Solutions to Separable Equations	21
	2.3	Models of Motion	30
	2.4	Linear Equations	32
	2.5	Mixing Problems	46
	2.6	Exact Differential Equations	52
	2.7	Existence and Uniqueness of Solutions	56
	2.8	Dependence of Solutions on Initial Conditions	64
	2.9	Autonomous Equations and Stability	66
3	Mo	odeling and Applications	79
	3.1	Modeling Population Growth	79
	3.2	Models and the Real World	85
	3.3	Personal Finance	85
	3.4	Electrical Circuits	91
4	Se	cond-Order Equations	94
	4.1	Definitions and Examples	94
	4.2	Second-Order Equations and Systems	102
	4.3	Linear, Homogeneous Equations with Constant Coefficients	119
	4.4	Harmonic Motion	127
	4.5	Inhomogeneous Equations; the Method of Undetermined Coefficients	149
	4.6	Variation of Parameters	162
	4.7	Forced Harmonic Motion	170

iv Contents

	5	Th	e Laplace Transform	194
		5.1	The Definition of the Laplace Transform	194
		5.2	Basic Properties of the Laplace Transform	204
		5.3	The Inverse Laplace Transform	215
		5.4 5.5	Using the Laplace Transform to Solve Differential Equations	225 245
		5.6	Discontinuous Forcing Terms The Delta Function	264
		5.7	Convolutions	268
	6	Nu	merical Methods	281
***************************************		6.1	Euler's Method	281
		6.2	Runge-Kutta Methods	301
		6.3	Numerical Error Comparisons	323
		6.4	Practical Use of Solvers	333
	7	Ma	atrix Algebra	343
		7.1	Vectors and Matrices	343
		7.2	Systems of Linear Equations with Two or Three Variables	350
		7.3	Solving Systems of Equations	359
		7.4	Homogeneous and Inhomogeneous Systems	371
		7.5	Bases of a Subspace	380
		7.6	Square Matrices	387
		7.7	Determinants	393
	8	An	Introduction to Systems	404
		8.1	Definitions and Examples	404
		8.2	Geometric Interpretation of Solutions	410
		8.3	Qualitative Analysis	420
		8.4	Linear Systems	426
		8.5	Propeerties of Linear Systems	433
*************	9	Lin	near Systems with Constant Coefficients	447
		9.1	Overview of the Technique	447
		9.2	Planar Systems	460
		9.3	Phase Plane Portraits	480
		9.4	The Trace-Determinant Plane	489
		9.5	Higher Dimensional Systems	505
		9.6 9.7	The Exponential of a Matrix Ouglitative Analysis of Linear Systems	530 562
			A DIGITION OF A DIGITARIA OF LAUGAL ANALGUN	301/

		Contents
	9.8 Higher-Order Linear Equations9.9 Inhomogeneous Linear Systems	571 587
10	Nonlinear Systems	604
	10.1 The Linearization of a Nonlinear System	604
	10.2 Long-Term Behavior of Solutions	615
	10.3 Invariant Sets and the Use of Nullclines10.4 Long-Term Behavior of Solutions to Planar Systems	620 628
	10.4 Long-Term Benavior of Solutions to Franki Systems 10.5 Conserved Quantities	637
	10.6 Nonlinear Mechanics	642
	10.7 The Method of Lyapunov	656
	10.8 Predator–Prey Systems	664
11	Series Solutions to Differential Equations	668
	11.1 Review of Power Series	668
	11.2 Series Solutions Near Ordinary Points	677
	11.3 Legendre's Equation	705
	11.4 Types of Singular Points—Euler's Equation	718
	11.5 Series Solutions Near Regular Singular Points	727
	 11.6 Series Solutions Near Regular Singular Points — the General Case 11.7 Bessel's Equation and Bessel Functions 	768 813
	11.7 Desset's Equation and Desset Functions	013
12	Fourier Series	823
	12.1 Computation of Fourier Series	823
	12.2 Convergence of Fourier Series	846
	12.3 Fourier Cosine and Sine Series	852 882
	12.4 The Complex Form of a Fourier Series12.5 The Discrete Fourier Transform and the FFT	889
	12.5 The Discrete Fourier Transform and the FFT	007
13	Partial Differential Equations	893
	13.1 Derivation of the Heat Equation	893
	13.2 Separation of Variables for the Heat Equation	894
	13.3 The Wave Equation	902
	13.4 Laplace's Equation	907
	13.5 Laplace's Equation on a Disk13.6 Sturm Liouville Problems	911 915
	13.7 Orthogonality and Generalized Fourier Series	913 918
	13.8 Temperature in a Ball—Legendre Polynomials	923
	13.9 The Heat and Wave Equations in Higher Dimension	926
	13.10 Domains with Circular Symmetry—Ressel Functions	930

64 Chapter 2 First-Order Equations

that $y_1(t) = -1$ and $y_2(t) = 1$ are both solutions to the differential equation. If y is a solution and satisfies y(1) = 0, then $y_1(1) < y(1) < y_2(1)$. By the uniqueness theorem we must have $y_1(t) < y(t) < y_2(t)$ for all t for which y is defined. Hence -1 < y(t) < 1 for all t for which y is defined.

30. Notice that $x_1(t) = 0$ and $x_2(t) = 1$ are solutions to the same differential equation with initial values $x_1(0) = 0 < 1/2 = x(0) < 1 = x_2(0)$. The right hand side of the differential equation, $f(t,x) = (x^3 - x)/(1 + t^2x^2)$, and

$$\frac{\partial f}{\partial x} = \frac{(3x^2-1)(1+t^2x^2)-2t^2x(x^3-x)}{(1+t^2x^2)^2},$$

are both continuous on the whole plane. Consequently the uniqueness theorem applies, so the solution curves for x, x_1 , and x_2 cannot cross. Hence we must have $0 = x_1(t) < x(t) < x_2(t) = 1$ for all t.

- 31. Notice that $x_1(t) = t^2$ is a solution to the same differential equation with initial value $x_1(0) = 0 < 1 = x(0)$. The right hand side of the differential equation, $f(t, x) = x t^2 + 2t$ and $\partial f/\partial x = 1$ are both continuous on the whole plane. Consequently the uniqueness theorem applies, so the solution curves for x and x_1 cannot cross. Hence we must have $t^2 = x_1(t) < x(t)$ for all t.
- 32. Notice that $y_1(t) = \cos t$ is a solution to the same differential equation with initial value $y_1(0) = 1 < 2 = y(0)$. The right hand side of the differential equation, $f(t, y) = y^2 \cos^2 t \sin t$ and $\partial f/\partial y = 2y$ are both continuous on the whole plane. Consequently the uniqueness theorem applies, so the solution curves for y and y_1 cannot cross. Hence we must have $y(t) > y_1(t) = \cos t$ for all t.

Section 2.8. Dependence of Solutions on Initial Conditions

1.
$$x(0) = 0.8009$$

2.
$$x(0) = .9084$$

3.
$$x(0) = 0.9596$$

4.
$$x(0) = 0.9826$$

5.
$$x(0) = 0.7275$$

6.
$$x(0) = 0.72897$$

7.
$$x(0) = 0.7290106$$

8.
$$x(0) = 0.729011125$$

9.
$$x(0) = -3.2314$$

10.
$$x(0) = -3.23208$$

11.
$$x(0) = -3.2320923$$

12.
$$x(0) = -3.230929999999$$

14.
$$1 - e^{\sin t} - (1/10)e^{|t|} \le y(t) \le 1 - e^{\sin t} + (1/10)e^{|t|}$$

Chapter 4. Second-Order Equations

Section 4.1. Definitions and Examples

1. Compare

$$y'' + 3y' + 5y = 3\cos 2t$$

with

$$y'' + p(t)y' + q(t)y = g(t),$$

and note that p(t) = 3, q(t) = 5, and $g(t) = 3\cos 2t$. Hence, the equation is linear and inhomogeneous.

2. Divide both sides of $t^2y'' = 4y' - \sin t$ by t^2 , then rearrange to obtain

$$y'' - \frac{4}{t^2}y' = -\frac{\sin t}{t^2}.$$

Compare this with

$$y'' + p(t)y' + q(t)y = g(t),$$

and note that $p(t) = -4/t^2$, q(t) = 0, and $g(t) = -(\sin t)/t^2$. Hence, the equation is linear and inhomogeneous.

3. Expand
$$t^2y'' + (1 - y)y' = \cos 2t$$
 to obtain

$$t^2y'' + y' - yy' = \cos 2t.$$

Note that the term yy' is nonlinear. Hence, this equation is nonlinear.

4. Divide both sides of $ty'' + (\sin t)y' = 4y - \cos 5t$ by t, then rearrange to obtain

$$y'' + \frac{\sin t}{t}y' - \frac{4}{t} = -\frac{\cos 5t}{t}$$

Compare this with

$$y'' + p(t)y' + q(t)y = g(t),$$

and note that $p(t) = (\sin t)/t$, q(t) = -4/t, and $g(t) = -(\cos 5t)/t$. Hence, the equation is linear and inhomogeneous.

5. In

$$t^2y'' + 4yy' = 0,$$

note that the term 4yy' is nonlinear. Hence, this equation is nonlinear.

6. Compare

$$y'' + 4y' + 7y = 3e^{-t}\sin t$$

with

$$y'' + p(t)y' + q(t)y = g(t),$$

and note that p(t) = 4, q(t) = 7, and $g(t) = 3e^{-t} \sin t$. Hence, the equation is linear and inhomogeneous.

7. In

$$y'' + 3y' + 4\sin y = 0$$

note that the term $4 \sin y$ is nonlinear. Hence, this equation is nonlinear.

8. Divide both sides of $(1 - t^2)y'' = 3y$ by $1 - t^2$, then rearrange the terms to obtain

$$y'' - \frac{3}{1 - t^2}y = 0.$$

Compare with

$$y'' + p(t)y' + q(t)y = g(t).$$

and note that p(t) = 0, $q(t) = -3/(1 - t^2)$, and g(t) = 0. Hence, the equation is linear and homogeneous.

144 Chapter 4 Second-Order Equations

t.

Note that the graph crosses the t-axis exactly once. Finally, by picking initial conditions from the unshaded region, you will note that this solution also crosses the y-axis exactly once, but at t < 0.

- 20. (a) The system $x'' + \mu x' + 4x = 0$ has characteristic equation $\lambda^2 + \mu \lambda + 4 = 0$. If $\mu = 4$, this becomes $\lambda^2 + 4\lambda + 4 = (\lambda + 2)^2 = 0$, and there is one repeated root, hence the critically damped case.
 - (b) The critically damped solution (solid line in figure) approaches the *t*-axis faster than any of the other overdamped solutions.

An overdamped screen door will shut on its own without slamming. A critically damped door will shut as fast as possible without slamming.

21. (a) Suppose that $mx'' + \mu x' + kx = 0$ is over-damped. We can write

$$x'' + \frac{\mu}{m}x' + \frac{k}{m}x = 0$$
$$x'' + 2cx' + \omega_0^2 = 0,$$

where $2c = \mu/m$ and $\omega_0^2 = k/m$. The system has characteristic equation $\lambda^2 + 2c\lambda + \omega_0^2 = 0$ and zeros

$$\lambda_1 = -c - \sqrt{c^2 - \omega_0^2} \quad \text{and}$$

$$\lambda_2 = -c + \sqrt{c^2 - \omega_0^2}.$$

If w4e set $\gamma = \sqrt{c^2 - \omega_0^2}$, then

$$\lambda_1 = -c - \gamma$$
 and $\lambda_2 = -c + \gamma$,

and $\lambda_2 - \lambda_1 = 2\gamma$. If the system is overdamped, note that

$$c^{2} - \omega_{0}^{2} > 0$$

$$\left(\frac{\mu}{2m}\right)^{2} > \frac{k}{m}$$

$$\mu^{2} > 4mk$$

$$\mu > 2\sqrt{mk}$$

The general solution is

$$x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}.$$

The initial condition x(0) = 0 gives $0 = C_1 + C_2$ and $C_1 = -C_2$. Differentiating x(t),

$$x'(t) = C_1 \lambda_1 e^{\lambda_1 t} + C_2 \lambda_2 e^{\lambda_2 t},$$

and the initial condition $x'(0) = v_0$ provides $v_0 = C_1\lambda_1 + C_2\lambda_2$. This system is easily solved for

$$C_1 = \frac{v_0}{\lambda_1 - \lambda_2} = -\frac{v_0}{2\gamma}$$
 and $C_2 = \frac{-v_0}{\lambda_1 - \lambda_2} = \frac{v_0}{2\gamma}$,

154 Chapter 4 Second-Order Equations

 $C_1 = -3/5$ and $C_2 = -11/20$. Therefore, the solution is

$$y = e^{t} \left(-\frac{3}{5} \cos 2t - \frac{11}{20} \sin 2t \right) + \frac{3}{5} \cos t - \frac{3}{10} \sin t.$$

22. The homogeneous equation y'' + 4y' + 4y = 0 has characteristic equation $\lambda^2 + 4\lambda + 4 = (\lambda + 2)^2 = 0$ and repeated root $\lambda = -2$. Thus the homogeneous solution is

$$y_h = (C_1 + C_2 t)e^{-2t}$$
.

The particular solution $y_p = at + b$ has derivatives $y_p' = a$ and $y_p'' = 0$, which when substituted in y'' + 4y' + 4y = 4 - t,

$$4a + 4(at + b) = 4 - t$$

 $4at + (4a + 4b) = -t + 4$.

Comparing coefficients,

$$4a = -4a + 4b = 4$$

which has solution a = -1/4 and b = 5/4. Thus, the general solution is

$$y = (C_1 + C_2 t)e^{-2t} - \frac{1}{4}t + \frac{5}{4}$$

The initial condition y(0) = -1 provides

$$-1 = C_1 + \frac{5}{4}.$$

Differentiate.

$$y' = C_2 e^{-2t} - 2e^{-2t} (C_1 + C_2 t) - \frac{1}{4}$$

The initial condition y'(0) = 0 provides

$$0 = C_1 - 2C_1 - \frac{1}{4}.$$

Thus, $C_1 = -9/4$ and $C_2 = -17/4$ and

$$y = \left(-\frac{9}{4} - \frac{17}{4}t\right)e^{-2t} - \frac{1}{4}t + \frac{5}{4}.$$

23. The homogeneous equation y'' - 2y' + y = 0 has characteristic equation $\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$, with repeated zero $\lambda = 1$. Thus, the homogeneous solution is

$$y_h = (C_1 + C_2 t)e^t.$$

The particular solution $y_p = at^3 + bt^2 + ct + d$ has derivatives

$$y'_p = 3at^2 + 2bt + c$$

$$y'' = 6at + 2b,$$

which when substituted in $y'' - 2y' + y = t^3$, rearranging, yields

$$at^{3} + (-6a+b)t^{2} + (6a-4b+c)t + (2b-2c+d) = t^{3}$$
.

Thus,

$$a = 1$$

$$-6a + b = 0$$

$$6a - 4b + c = 0$$

$$2b - 2c + d = 0$$

which has solution a=1, b=6, c=18, and d=24. Thus, the general solution is

$$y = (C_1 + C_2 t)e^t + t^3 + 6t^2 + 18t + 24.$$

The initial condition y(0) = 1 gives $1 = C_1 + 24$. Differentiating,

$$y' = C_2 e^t + (C_1 + C_2 t)e^t + 3t^2 + 12t + 18.$$

The initial condition y'(0) = 0 gives $0 = C_2 + C_1 + 18$. The system has solution $C_1 = -23$ and $C_2 = 5$. Therefore, the solution is

$$y = (-23 + 5t)e^t + t^3 + 6t^2 + 18t + 24.$$

24. The homogeneous equation y'' - 3y' - 10y = 0 has characteristic equation $\lambda^2 - 3\lambda - 10 = (\lambda - 5)(\lambda + 2) = 0$ with zeros $\lambda_1 = 5$ and $\lambda_2 = -2$. Thus, the homogeneous solution is

$$y_h = C_1 e^{5t} + C_2 e^{-2t}$$
.

Thus, the forcing term of $y'' - 3y' - 10y = 3e^{-2t}$ is a solution of the homogeneous equation. Substitute $y_p = Ate^{-2t}$ and its derivatives

$$y'_p = Ae^{-2t}(1 - 2t)$$

 $y''_p = (-4 - 4t)Ae^{-2t}$

394 Chapter 7 Matrix Algebra

The determinant is

$$|\mathbf{v}_1, \mathbf{v}_2| = \begin{vmatrix} 1 & 6 \\ 4 & 1 \end{vmatrix} = (1)(1) - (4)(6)$$

= 1 - 24 = -23.

Note that the determinant is the negative of the area.

4. Estimate the area by counting square units inside the parallelogram in

The determinant is

$$|\mathbf{v}_1, \mathbf{v}_2| = \begin{vmatrix} -2 & 4 \\ 5 & 3 \end{vmatrix} = (-2)(3) - (5)(4)$$

= -6 - 20 = -26.

Note that the determinant is the negative of the area.

5. Estimate the area by counting square units inside the parallelogram in

The determinant is

$$|\mathbf{v}_1, \mathbf{v}_2| = \begin{vmatrix} 5 & -2 \\ 5 & 6 \end{vmatrix} = (5)(6) - (5)(-2)$$

= 30 + 10 = 40.

6. First note the determinant of A.

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

To prove part (1), construct B by adding r times row 1 to row 2.

$$B = \begin{pmatrix} a & b \\ c + ra & d + rb \end{pmatrix}.$$

Then,

$$|B| = \begin{vmatrix} a & b \\ c + ra & d + rb \end{vmatrix},$$

= $a(d + rb) - b(c + ra),$
= $ad - bc,$
= $|A|.$

To prove part (2), craft B by swapping rows 1 and 2 of matrix A.

$$B = \begin{pmatrix} c & d \\ a & b \end{pmatrix}$$

594 Chapter 9 Linear Systems with Constant Coefficients

or,

$$A\mathbf{y}_p + \mathbf{f} = \begin{pmatrix} (-3a_1 + 6a_2)t + (-3b_1 + 6b_2 + 3) \\ (-2a_1 + 4a_2)t + (-2b_1 + 4b_2 + 4) \end{pmatrix}.$$

Comparing coefficients of the polynomial entries (e.g., $0 = -3a_1 + 6a_2$ and $a_1 = -3b_1 + 6b_2 + 3$), we get the following system.

$$a_1 - 2a_2 = 0$$

$$a_1 + 3b_1 - 6b_2 = 3$$

$$a_2 + 2b_1 - 4b_2 = 4$$

Solving, $a_1 = -12$, $a_2 = -6$, $b_1 = 5 + 2b_2$, with b_2 free. Letting $b_2 = 0$, we get $a_1 = -12$, $a_2 = -6$, $b_1 = 5$, and $b_2 = 0$, providing the particular solution

$$\mathbf{y}_p = \begin{pmatrix} -12 \\ -6 \end{pmatrix} t + \begin{pmatrix} 5 \\ 0 \end{pmatrix}.$$

17. If $y_p = (at + b)e^{-t}$, then

$$\mathbf{y}_p' = \mathbf{a}e^{-t} - (\mathbf{a}t + \mathbf{b})e^{-t} = [-\mathbf{a}t + (\mathbf{a} - \mathbf{b})]e^{-t}$$
$$= \begin{pmatrix} -a_1t + (a_1 - b_1) \\ -a_2t + (a_2 - b_2) \end{pmatrix} e^{-t}.$$

Next.

$$A\mathbf{y}_{p} + \mathbf{f} = A(\mathbf{a}t + \mathbf{b})e^{-t} + \mathbf{f}$$

$$= \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a_{1}t + b_{1} \\ a_{2}t + b_{2} \end{pmatrix} e^{-t} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-t},$$

$$= \begin{pmatrix} (a_{1} + 2a_{2})t + (b_{1} + 2b_{2} + 1) \\ (2a_{1} + a_{2})t + (2b_{1} + b_{2}) \end{pmatrix} e^{-t}.$$

Thus,

$$\begin{pmatrix} -a_1t + (a_1 - b_1) \\ -a_2t + (a_2 - b_2) \end{pmatrix}$$

$$= \begin{pmatrix} (a_1 + 2a_2)t + (b_1 + 2b_2 + 1) \\ (2a_1 + a_2)t + (2b_1 + b_2) \end{pmatrix}.$$

Comparing coefficients of the polynomial entries in these vectors (e.g., $-a_1 = (a_1 + 2a_2)$) leads to the system

$$a_1 + a_2 = 0$$

$$a_1 - 2b_1 - 2b_2 = 1$$

$$a_2 - 2b_1 - 2b_2 = 0$$

The solution of this system is $a_1 = 1/2$, $a_2 = -1/2$, $b_1 = -1/4 - b_2$, where b_2 is free. Choosing $b_2 = -1/8$ provides the solution $a_1 = 1/2$, $a_2 = -1/2$, $b_1 = -1/8$, and $b_2 = -1/8$, so

$$\mathbf{y}_p = (\mathbf{a}t + \mathbf{b})e^{-t} = \begin{pmatrix} (1/2)t - 1/8 \\ (-1/2)t - 1/8 \end{pmatrix} e^{-t},$$

which is identical to that found in Example 9.15.

18. The current coming into the node at "a" must equal the current coming out of the same node. Hence,

$$i = i_1 + i_2.$$
 (9.16)

Traversing (clockwise) the leftmost loop containing emf, resistor, and inductor, Kirchoff's voltage law provides

$$-30 + 10i + 0.02i_1' = 0. (9.17)$$

Traversing (clockwise) the outer loop containing emf, both resistors, and the far inductor,

$$-30 + 10i + 20i_2 + 0.04i_2' = 0. (9.18)$$

If we now substitute $i = i_1 + i_2$ into equations (9.17) and (9.18), then a little algebra provides us with the following system (in the form $\mathbf{x}' = A\mathbf{x} + \mathbf{f}$).

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix}' = \begin{bmatrix} -500 & -500 \\ -250 & -750 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} + \begin{bmatrix} 1500 \\ 750 \end{bmatrix}$$
 (9.19)

A computer provides the following eigenvalueeigenvector pairs for the coefficient matrix in equation (9.19):

$$-1000 \longrightarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $-250 \longrightarrow \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

Hence, the homogeneous solution is

$$\mathbf{x} = C_1 e^{-1000t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{-250t} \begin{bmatrix} -2 \\ 1 \end{bmatrix}. \quad (9.20)$$

Now for a particular solution, let's try the form $\mathbf{x}_p = (a_1, a_2)^T$. Substituting this informed guess in equation (9.19), we get

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -500 & -500 \\ -250 & -750 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + \begin{bmatrix} 1500 \\ 750 \end{bmatrix}.$$

694 Chapter 11 Series Solutions to Differential Equations

Choose $y_1(x)$ with $1 = y_1(0) = a_0$ and $0 = y'_1(0) = a_1$.

$$y_1(x) = 1 + \frac{1}{2 \cdot 1} x^2 - \frac{3}{4 \cdot 3 \cdot 2 \cdot 1} x^4 + \dots = 1 + \frac{1}{2} x^2 + \sum_{n=2}^{\infty} \frac{(-1)^{n+1} (3 \cdot 7 \cdot 11 \cdot \dots \cdot (4n-5))}{(2n)!} x^{2n}$$

Choose $y_2(x)$ with $0 = y_2(0) = a_0$ and $1 = y_2'(0) = a_1$.

$$y_2(x) = x - \frac{1}{3 \cdot 2} x^3 + \frac{5}{5 \cdot 4 \cdot 3 \cdot 2} x^5 - \dots = x - \frac{1}{6} x^3 + \sum_{n=2}^{\infty} \frac{(-1)^n (5 \cdot 9 \cdot 12 \cdot \dots \cdot (4n-3))}{(2n+1)!} x^{2n+1}.$$

Note that the solutions are chosen so that

$$W(y_1, y_2)(0) = \begin{vmatrix} y_1(0) & y_2(0) \\ y_1'(0) & y_2'(0) \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \neq 0,$$

so the solutions are independent.

18. The coefficients of y' and y are p(x) = x and q(x) = 2, both polynomials and analytic at x = 0. Thus, x = 0 is an ordinary point. According to Theorem 2.29, all solutions have radius of convergence $R = \infty$. We seek a solution of the form $y = \sum_{n=0}^{\infty} a_n x^n$ with derivatives

$$y'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$$
 and $y''(x) = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$.

Substituting,

$$0 = y'' + xy' + 2y = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + x \sum_{n=1}^{\infty} na_n x^{n-1} + 2 \sum_{n=0}^{\infty} a_n x^n$$
$$= \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=1}^{\infty} na_n x^n + \sum_{n=0}^{\infty} 2a_n x^n.$$

Shifting the index of the first term and noting that the second term

$$\sum_{n=1}^{\infty} n a_n x^n = \sum_{n=0}^{\infty} n a_n x^n,$$

we write

$$0 = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \sum_{n=0}^{\infty} na_nx^n + \sum_{n=0}^{\infty} 2a_nx^n = \sum_{n=0}^{\infty} \left[(n+2)(n+1)a_{n+2} + (n+2)a_n \right]x^n.$$

Setting coefficients equal to zero,

$$(n+2)(n+1)a_{n+2} + (n+2)a_n = 0$$
 or $a_{n+2} = \frac{-a_n}{n+1}$, $n \ge 0$.

Thus,

$$a_2 = -a_0$$
, $a_4 = \frac{-a_2}{3} = \frac{a_0}{3}$, $a_6 = \frac{-a_4}{5} = \frac{-a_0}{5 \cdot 3}$, and $a_8 = \frac{-a_6}{7} = \frac{a_0}{7 \cdot 5 \cdot 3}$.

894 Chapter 13 Partial Differential Equations

Section 13.2. Separation of Variables for the Heat Equation

1. The thermal diffusivity of gold is $k = 1.18 \,\mathrm{cm^2/sec}$. We will let the unit of length be centimeters, so L = 50. The boundary conditions are u(0, t) = 0 and u(50, t) = 0, so the steady-state temperature is 0. Hence the solution is given by

$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{-kn^2\pi^2t/L^2} \sin(n\pi x/L),$$

where the coefficients are

$$b_n = \frac{2}{L} \int_0^L 100 \sin(n\pi x/L) dx$$
$$= \frac{200}{n\pi} [1 - \cos(n\pi)]$$
$$= \begin{cases} \frac{400}{n\pi} & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even.} \end{cases}$$

Thus the solution is given by

$$u(x,t) = \sum_{p=0}^{\infty} \frac{400}{(2p+1)\pi} e^{-1.18 \times (2p+1)^2 \pi^2 t/2500}$$
$$\times \sin\left(\frac{n\pi x}{50}\right).$$

For t=100, the term for p=1 is bounded by 0.65. Hence one term of the series will suffice to estimate the temperature within 1° . Using just this one term, we solve

$$\frac{400}{\pi}e^{-1.18\times\pi^2t/2500} = 10$$

for t = 546 sec. Hence we see that it will take about 546 sec for the temperature to drop below 10°C. The

temperature at 100 second intervals is plotted below.

2. The thermal diffusivity of aluminum is $k = 0.84 \,\mathrm{cm^2/sec}$. For t = 100, the term for p = 1 is bounded by 2.14, while that for p = 2 is bounded by 0.006. Hence two terms will suffice to compute the temperature for $t = 100 \,\mathrm{sec}$. Looking at the the term for p = 0, we solve

$$\frac{400}{\pi}e^{-0.84\times\pi^2t/2500} = 10$$

for t = 767 sec. For such a time, all of the other terms are extremely small, so we see that it will take about 767 sec for the temperature to drop below 10° C.

The thermal diffusivity of silver is $k = 1.7 \,\mathrm{cm^2/sec}$. For t = 100, the term for p = 1 is bounded by 0.1.Hence one term will suffice to compute the temperature for $t = 100 \,\mathrm{sec}$. Looking at the the term for p = 0, we solve

$$\frac{400}{\pi}e^{-1.7\times\pi^2t/2500} = 10$$

for $t=379\,\mathrm{sec}$. For such a time, all of the other terms are extremely small, so we see that it will take about 379 sec for the temperature to drop below $10^{\circ}\mathrm{C}$.