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THEOREM 2. 4 .

lf gis continuous atcandf is oommuoua at g(c), then the composition f ag -
 is continuous at ¢.

The idea here is as follows: with g continuous at ¢, we know that
for x close to ¢, g(x) is close to g(c);
from the continuity of f at g(c), we know that
with g(x) close to g(c), f(g(x))is close to f(g(c)).
In summary,
with x close to ¢, f(g{x))is close to f(g(c)).

The argument we just gave is 100 vague 1o be a proof. Here, in contrast, is a proof.
We begin with € :- 0. We must show that there exists a number § > 0 such that

if  w—cl =8, then [f(g(x))— f(g(eN < e

In the first place, we observe that, since f is continuous at g(c), there does cxist a
number §; = 0 such that

[¢)] if lt -glo)l < 8. then ()~ f@R©)] <e.

With 8 =+ 0, we know from the continuity of g at ¢ that there exists a pumber § > 0
such that

@) if  |x—cl<$,  then |g(x)-gle)l <&

Combining (2) and (1), we have what we want: by (2),
if |x —¢c| < 8. then lg(x) = gle) < &,
so that by (1)
1£(@()) = f(gle))] < €.

This proof is illustrated in Figure 2.4.5. The numbers within & of ¢ are taken by g
o within &, of g(c), and then by f to within ¢ of f(g(c)).

Figure 2.4.5

[{s time 10 juok at some cxamples.
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division proposes that the road be constructed by restoring a section of the old road
from 4 to some point £ and constructing a new road from P to B. Given that the cost of
restoring the old road is $2,000,000 per mile and the cost of a new road is $4,000,000
per mile, how much of the old road should be restored so as to minimize the cost of the
project.

SOLUTION  Figure 4.5.5 shows the geometry of the problem. Notice that we have
chosen a straight line joining P and 8 rather than some curved path. (The shortest

conncction between two points is provided by the straight-line path.) We let x be the
amount of old road that will be restored. Then Figure 4.5.5

VO (5 — )7 =34 - 10x + 2

is the length of the new part. The total cost of constructing the two sections of
road is

Clr)=2-10% +4-10°[34 — 10x +x?)'2, 0<x <5,

We want to find the value of x that minimizes this function.
Differentiation gives

C'(x)=210°+4.10°(3) [34 = 10x +x7)"*(2x - 10)

4.10%x = 5)

=2.10° -
=20 B e

0<x <5

Setting C’(x) = 0, we find that
2(x —5) _
[34 — 10x +x2)1/2
2(x — 5) = —[34 — 10x 4 x2]'2
4(x? = 10x + 25) = 34 — J0x +x?
367 — 30x + 66 =0
xt—10x +22=0.

1+

By the gencral quadratic formula, we have
10 £ /100 — 4(22
x= ‘2—4(—) =53

The value x = 5+ +/3 is not in the domain of our function; the value we want is
x = 5~ /3. We analyzc the sign of C”:

sgnof ¢t —-m-m-o o O4st44

G

behavior of C: 0 5-V3 5 x
decreases Increases

Since the function is continuous on [0, 5), it decreases on [0, 5 — /3 and increcases
on [5— +/3,5). The number x = 5 ~ +/3 = 3.27 gives the minimum value of C.
The highway department will minimize its costs by restoring 3.27 miles of the old
road. J

Example 5 (The angle of incidence equals the angle of reflection.) Figure 4.5.6
depicts light from point 4 reflected by a mirror to point B. Two angles have been
marked: the angle of incidence, 6, and the angle of reflection, 6,. Experiment shows Figure 4.5.6
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33. (a) Let f be continuous on [—a. 0). Use a change of variablc

(®) /a f(X)dXZZ/:_/’(x)dx if f is even.

to show that
o - N " A
Exercises 35-38. Evaluate using symmet; wnsldcmlmn:.
[ swa=[ e e 8 sYwmetry :
~a 0
’ 35./ (x + sin 2x) dlx. 3. ‘d
(b) Let f be continuous on [—a, a]. Show that /4 3148
u 4 /3
/ f(x)dx:[ () + f(—0)]dx. 37./ (1 +x% — cosx)dx.
—a o -3
el fbe i i x s the state- 22
34. Let fb«,_a function continuous f:n[ »a.a]‘ Prove the state 18, (3= 2x 1 sinx T cos2x)dk.
ment basing your argument on Exercise 33. s

® /f FEde=0if [ is odd.

W 5.9 MEAN-VALUE THEOREMS FOR INTEGRALS;
AVERAGE VALUE OF A FUNCTION

We begin with a result that we asked you to prove earlier. (Exercise 33, Section 5.3.)

[ m—)}u - j(‘c)ib —a)

,"I})is nuﬁber fle)is _call;‘d‘ the average value (ot mean valie) of fon[a,b}.

We now have the following identiry:

b
(59.2) /. S(x)dx = (the average value of f on[a.b])- (b~ a).

I his identity provides a powerful, intuitive way of viewing the definite integral.
Think for a moment about area. If £ is constant and positive on [a, ], then Q, the

a
. ; : area = (the constant value of /)-(6 - o)
region below the graph, is a rectangle. Irs area is given by the formula

Figure 5.9.1
aca of Q = (the constant value of f on [a. 6])- (b —a).  (Figue <9.1)

If £ is now allowed to vary continuously on [a, b], then we have

b
z\mol’Q:/ S(x)dx,

and the arca formula reads

area of Q = (the average value of f on [a, b]) - (b — a). (Fipare 5.9.2)
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|
JPolar axis

[ 7]

[ 3

r=6, 0s0<2x
spiral of Archimedes

Figure 10.3.1

In Figure ]0.3.2 we have marked the values of & where # is zero and the values of
6 where r takes on an extreme value.

Figure 10.3.2

Reading from the figure we have the following: as 6 increascs from 0 to jlrr.r
increases from —1 to 0; as 6 increases from %n to m, r increases from 0 to 3; as ¢
from 7 to %n. r from 3 10 0: finally, as 6 increases from %rr o2, r

decreases from 0 to —1.
By applying this information step by step, we develop a sketch of the curve

r =1—2cos8 in polar coordinates. (Figure 10.3.3.)
-1.0) )
r polar axis 13,21 ~ polar axis
0505t 0<8sx

polar axis v polar a5

0<os3x 0s0s2x

Figure 10.3.3
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that remains afcr all of the “middle thirds” have been delcled
is cilled the Cantor middle third set. Give some points that
are in the Cantor sct.

29, Start with a square thal bas sides four units long. Join the
‘midpoints of the sides of the square to form a sccond square
inside the first. Then join the midpoints of the sides of the
second square to form a third square, and so on. See the
figure. Find the sum of the areas of the squares.

30. (a) Show that if the series Y~ ax converges and the series
¥ by diverges, then the series Y (ax + by) diverges.

(b) Give examples to show that if T ax and ¥ bx both di-
verge, then cach of the series

Y@+ by)

may converge or may diverge.

and

Y —byy

%
=3 Prove

s
that R" — Qasn — oc. Note that if 5, is the th pamznl sun
x

of the series, then Y ag = 5, + Ry; R, is called the remain-
=

31. Let E ag beaconvergentseries and let R,

der.
=
32. (a) Prove that if 3 a; is a convergent series with all lerms
o
nonzzro, then ):(1 Jac) diverges.
(b) Suppose that ax > 0 for all  and }: ay, diverges. Show

by example that Z(]/"k) may converge and il may di-
k=0

verge

aAgariat §

33. Show that

althouph

34. Show that
S (k41
b (L) diverges.
hw | k
35. (a) Assume that d; — 0 and show that
D e~ sy =dy
=l

(b) Sum the following serics:

& EFT-VE & 2
Yy X wmaey

36. Show tha(

hel
Zh (l—x)‘ for

HINT: Verify that s,, the #th partial sum of the series, satis-
£us the idantiry

5] < 1.

(1 —xYs 1= (a4 D" +nxt
b(Exerclses 37-40. Speed of convergence) Find the least integer
N for waich the nth partial sum of the series differs from the
sum of the scries by less than 0.0001.

x ®
3y 38. ¥(0.9).

=Y P=

2 ) w0 (2 N
39. . ).

E k(k+2) E (3>

P

41. Start with the geometric series 3 x* with [x| < 1 and a

=)
positive number €. Determine the least positive intcper N
for which |L — sx| < ¢ given thal the sum of the series is L
and sy is the Nth partial sum.

42. Prove that the serics Y (axy; — a;) comverges iff the o, tend
mt

1o a finite limit.

W 12.3 THE INTEGRAL TEST; BASIC COMPARISON,

LIMIT COMPARISON

Here we begin our study of series with nonnegative lerms: a; > 0 for all k. For such

series (he sequence of partial sums is nondecreasing:

1

Sa+1 =
=
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1 2 2x 2aresinx x — (1 +x?)urctan x
Tp—— B — 15, ——— +arcsin2x 17. 19, ————
+2+2 xVaxr -1 NVi=rri x2(1 +x7)

1 1 % \

n. 3. 25, 27, 2xarcsec () —
(1 + 4x?)Jarctan 2x x(1 +(Inx)?] V=] 7 2“’““(;)
29. c0s [arcsec (Inx)) 2 31, JEZX
s pec e — .
xlnx|y/{nx)y? =1 Ve+x

Wo@r OVi-x @l G-l ®L % aresim (x+b e
‘ VI=xt 7 a

| ;
B R L

$3, Jarcsing? +C 55 Jarctanx?+C 87, larctan(Jtanz)+C 9. J(asinx +C 61 arcsin(nx)+C
2 1 I 3 1

1
0. 37 65 2r-§ 61 4n(V2-1)

69. Vs + sk feet from the point where the line of the sign intersects the read,

!
JT=xT

7). (b) {xa¥; arca of semicircle of radins @ 75, is not defined for x > 1.

77. cstimale & 0.523, sin 0.523 = 0.495 explanation: the integral = arcsin 0.5: therefore sin (integral) = 0.5

SECTION7.3

asmhax 1 acoshax
— 5. ————— 7. ah{cosh bx — sinhax 9.
S eomhar T ooz b( )

1L —¢¥cosh2r +2¢ sinh2x 15 anhx 17 (sinhxY (In(sinhx) + x cothx]  27. absolute max —3

1. 2rcosnx? % 11,26 cash (¢”)

sinhax

1 !
A A=28=}c=3 3. Lihax+C 3 Lsnkasc . lheehantc . —b—sc
a 3 a acosh ax
41. §(sinhx coshx + 1)+ C 43. 2cosh Jx +C 48, sinh1 & 1,175 477 49. 7
SI. nlin$ + sinh(#In5) = 250492 83 (a) (0.69315,1.25)
(b) 4 = 038629
SECTION 1.9 i 5 # e
: 26 cosh{arctan £) —xeseh?/xF 4 1 —sech x(tanh.x + 2sinhx)
. 2a <h A 5 5 5
1. 2fanhx sechix chx cschx T4 e 7 Wzt 9 ey
5@ ®F ©F @f ©f
25, (a) absolute max f(0) = |
@
(0) points of inflection at x = In(1 + V2) = 0.88],x = —In(} + V2) =
— 0881
(c) coneave up on (=00, — (1 + /2 U (In (1 + v/2). ooy, concave down
on(—In(l+v2),In(1 + V2 5881 Ery )
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