INSTRUCTOR'S SOLUTIONS MANUAL

to accompany

CALCULUS ONE AND SEVERAL VARIABLES

EIGHTH EDITION

SATURNINO SALAS

EINAR HILLE

GARRET ETGEN

University of Houston

PREPARED BY
BRADLEY E. GARNER
University of Houston - Clear Lake
CARRIE J. GARNER

JOHN WILEY & SONS, INC.

New York • Chichester • Weinheim • Brisbane • Singapore • Toronto

CONTENTS

Chapter	1	•		•					•						•			•						•					٠.		1
Chapter	2			•	•		-								•		•	•	•							•		•		i	30
Chapter	3							•	•	•				•			•								•	•			٠.		61
Chapter	4				•			•		•																				1	33
Chapter	5			•														-									•			2	16
Chapter	6		•		• •	٠.	•	•	-									-							•	•				2	68
Chapter	7													•		•	•			•								•		3	14
Chapter	8											•		•		•		•		-										3′	73
Chapter	9	٠.		•					•			•	•			•				•		•			•			•		4	63
Chapter	10							•						•				-		•							-			52	25
Chapter	11						•	•	•		•			•					•				•		•	•	•			50	54
Chapter	12											•					•		-		•		•		•					6	17
Chapter	13		•	•				•	• .						•			•												64	14
Chapter	14		•	•		-												•			•									67	75
Chapter 1	15			•								•			-		•								•					69) 8
Chapter 1	16						•									-		-											•	76	56
Chapter 1	17		•								•					•														81	2
Chapter 1	18																													Q.	Q

96 SECTION 3.6

$$\frac{d}{dx}\left(f(y)=f'(y)g'(x)=1 \quad \Longrightarrow \quad f'(y)=\frac{1}{g'(x)} \ \text{provided } g'(x) \neq 0$$

73. $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = (3x^2 - 3)(4t - 1)$ At t = 2, x(2) = 8 and $\frac{dy}{dt} = [3(8)^2 - 3][4(2) - 1] = 1323$

74. $A = \frac{\sqrt{3}}{4}x^2$, where $x = \frac{2\sqrt{3}}{3}h$. Now $\frac{dA}{dh} = \frac{dA}{dr}\frac{dx}{dh} = \frac{\sqrt{3}}{2}x \cdot \frac{2\sqrt{3}}{3} = \frac{2\sqrt{3}}{3}h; \quad \frac{dA}{dh} = 4 \text{ when } h = 2\sqrt{3}$

75. $V = \frac{4}{3}\pi r^3$ and $\frac{dr}{dt} = 2$ cm/sec. By the chain rule, $\frac{dV}{dt} = \frac{dV}{dr}\frac{dr}{dt} = 4\pi r^2\frac{dr}{dt} = 8\pi r^2$.

At the instant the radius is 10 centimeters, the volume is increasing at the rate

$$\frac{dV}{dt} = 8\pi (10)^2 = 800\pi \text{ cm}^3/\text{sec.}$$

76. $V=\frac{4}{3}\pi r^3$, $S=4\pi r^2$, and $\frac{dV}{dt}=200$. $\frac{dS}{dt}=\frac{dS}{dr}\cdot\frac{dr}{dV}\cdot\frac{dV}{dt}$ $=8\pi r\cdot\frac{1}{4\pi r^2}\cdot200$ $=\frac{400}{r}$ =80 when r=5

The surface area is increasing 80 cm²/sec. at the instant the radius is 5 centimeters.

77. $KE = \frac{1}{2} mv^2$; $\frac{d(KE)}{dt} = \frac{d(KE)}{dv} \cdot \frac{dv}{dt} = mv \frac{dv}{dt}$.

78. (a) $\frac{dF}{dt} = \frac{dF}{dr} \cdot \frac{dr}{dt} = -\frac{2k}{r^3} \cdot (49 - 9.8t) - \frac{2k}{(49t - 4.9t^2)^3} (49 - 9.8t), \ 0 \le t \le 10$

(b) $\frac{dF}{dt}(3) = -\frac{2k}{(102.9)^3}(19.6); \quad \frac{dF}{dt}(7) = \frac{2k}{(102.9)^3}(19.6).$

SECTION 3.6

1.
$$\frac{dy}{dx} = -3\sin x - 4\sec x \tan x$$
 2.
$$\frac{dy}{dx} = 2x \sec x + x^2 \sec x \tan x$$

3.
$$\frac{dy}{dx} = 3x^2 \csc x - x^3 \csc x \cot x$$
 4.
$$\frac{dy}{dx} = 2 \sin x \cos x$$

5.
$$\frac{dy}{dt} = -2\cos t \sin t$$
 6.
$$\frac{dy}{dt} = 6t \tan t + 3t^2 \sec^2 t$$

7.
$$\frac{dy}{du} = 4\sin^3 \sqrt{u} \, \frac{d}{du} (\sin \sqrt{u}) = 4\sin^3 \sqrt{u} \, \cos \sqrt{u} \, \frac{d}{du} (\sqrt{u}) = 2u^{-1/2} \sin^3 \sqrt{u} \, \cos \sqrt{u}$$

8.
$$\frac{dy}{du} = \csc u^2 - 2u^2 \csc u^2 \cot u^2$$
 9. $\frac{dy}{dx} = \sec^2 x^2 \frac{d}{dx} (x^2) = 2x \sec^2 x^2$

196 SECTION 4.7

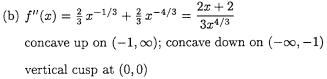
(b)
$$f''(x) = -\frac{2}{9}x^{-4/3} + \frac{2}{9}x^{-5/3} = \frac{2(1-x^{1/3})}{9x^{5/3}}$$

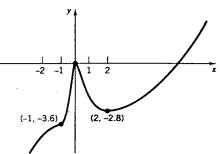
concave up on $(0,1)$
concave down on $(-\infty,0) \cup (1,\infty)$
vertical tangent at $(0,0)$

41.
$$f(x) = \frac{3}{5} x^{5/3} - 3x^{2/3}$$
(a)
$$f'(x) = x^{2/3} - 2x^{-1/3} = \frac{x-2}{x^{1/3}}$$

$$f \text{ is increasing on } (-\infty, 0] \cup [2, \infty)$$

$$f \text{ is decreasing on } [0, 2]$$





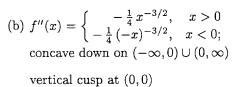
42.
$$f(x) = \sqrt{|x|}$$

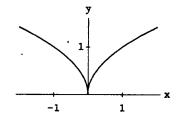
= $\begin{cases} x^{1/2}, & x \ge 0 \\ (-x)^{1/2}, & x < 0. \end{cases}$

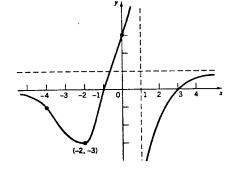
(a)
$$f'(x) = \begin{cases} \frac{1}{2}x^{-1/2}, & x > 0\\ -\frac{1}{2}(-x)^{-1/2}, & x < 0; \end{cases}$$

f is increasing on $[0, \infty)$

f is decreasing on $(-\infty, 0]$

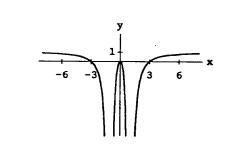






43.

vertical asymptote: x=1 horizontal asymptotes: $y=0,\ y=2$ no vertical tangents or cusps



44.

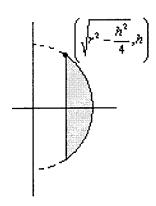
vertical asymptotes: $x=1,\ x=-1$ horizontal asymptote: y=1 no vertical tangents or cusps

296 SECTION 6.4

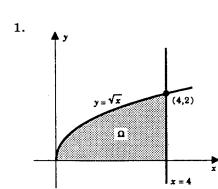
45.
$$V = \int_0^r 2\pi x (h - \frac{h}{r}x) dx = 2\pi h \left[\frac{x^2}{2} - \frac{x^3}{3r}\right]_0^r = \frac{\pi r^2 h}{3}.$$

46.
$$V = 2 \int_{\sqrt{r^2 - h^2/4}}^{r} 2\pi x \sqrt{r^2 - x^2} dx$$
$$= -2\pi \int_{h^2/4}^{0} u^{\frac{1}{2}} du \text{ (where } u = r^2 - x^2\text{)}$$

$$=2\pi \left[\frac{2}{3}u^{\frac{3}{2}}\right]_0^{h^2/4}=\frac{\pi h^3}{6}.$$



SECTION 6.4



$$A = \int_{0}^{4} \sqrt{x} \, dx = \frac{16}{3}$$

$$\overline{x}A = \int_{0}^{4} x\sqrt{x} \, dx = \frac{64}{5}, \quad \overline{x} = \frac{12}{5}$$

$$\overline{y}A = \int_{0}^{4} \frac{1}{2} (\sqrt{x})^{2} \, dx = 4, \quad \overline{y} = \frac{3}{4}$$

$$V_{x} = 2\pi \overline{y}A = 8\pi, \quad V_{y} = 2\pi \overline{x}A = \frac{128}{5}\pi$$

$$A = \int_0^2 x^3 dx = 4$$

$$\overline{x}A = \int_0^2 x x^3 dx = \frac{32}{5}, \quad \overline{x} = \frac{8}{5}$$

$$\overline{y}A = \int_0^2 \frac{1}{2} (x^3)^2 dx = \frac{64}{7}, \quad \overline{y} = \frac{16}{7}$$

$$V_x = 2\pi \overline{y}A = \frac{128}{7}\pi, \quad V_y = 2\pi \overline{x}A = \frac{64}{5}\pi$$

Let a=2

496 SECTION 9.6

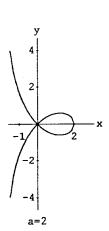
35. (a)
$$y^2 = x^2 \left(\frac{a-x}{a+x}\right)$$

$$r^2 \sin^2 \theta = r^2 \cos^2 \theta \left(\frac{a-r \cos \theta}{a+r \cos \theta}\right)$$

$$\sin^2 \theta (a+r \cos \theta) = \cos^2 \theta (a-r \cos \theta)$$

$$r \cos \theta = a \cos 2\theta$$

$$r = a \cos 2\theta \sec \theta$$



(c)
$$A = \int_{3\pi/4}^{5\pi/4} \frac{1}{2} a^2 \cos^2 2\theta \sec^2 \theta \, d\theta$$

$$= 2 \int_{3\pi/4}^{5\pi/4} \cos^2 2\theta \sec^2 \theta \, d\theta \qquad (a=2)$$

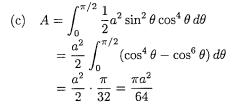
$$= 2 \int_{3\pi/4}^{5\pi/4} \frac{\left(2 \cos^2 \theta - 1\right)^2}{\cos^2 \theta} \, d\theta$$

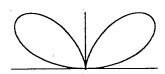
$$= 2 \int_{3\pi/4}^{5\pi/4} \left(4 \cos^2 \theta - 4 + \sec^2 \theta\right) \, d\theta$$

$$= 2 \int_{3\pi/4}^{5\pi/4} \left(-2 + 2 \cos 2\theta + \sec^2 \theta\right) \, d\theta$$

$$= 2 \left[-2\theta + \sin 2\theta + \tan \theta\right]_{3\pi/4}^{5\pi/4} = 8 - 2\pi$$

- **36.** (a) $(x^2 + y^2)^2 = ax^2y \implies r^4 = ar^2\cos^2\theta r \sin\theta \implies r = a\sin\theta\cos^2\theta$
 - (b) same for all values of a, with different scale





SECTION 9.6

1.
$$4x = (y-1)^2$$

3.
$$y = 4x^2 + 1, \quad x \ge 0$$

$$5. \quad 9x^2 + 4y^2 = 36$$

2.
$$2x + 3y = 13$$

4.
$$y = (x+1)^3 - 5$$

6.
$$x = (y-2)^2 + 1$$

796 SECTION 16.7

37.
$$V = \int_0^a \int_0^{\phi(x)} \int_0^{\psi(x,y)} dz \, dy \, dx = \frac{1}{6} \, abc \text{ with } \phi(x) = b \left(1 - \frac{x}{a} \right), \quad \psi(x,y) = c \left(1 - \frac{x}{a} - \frac{y}{b} \right)$$

$$(\overline{x}, \overline{y}, \overline{z}) = \left(\frac{1}{4} \, a, \, \frac{1}{4} \, b, \, \frac{1}{4} \, c \right)$$

38.
$$I_z = \iiint_x \frac{M}{V} (x^2 + y^2) dx dy dz = \frac{1}{30} \left(\frac{M}{V} \right) = \frac{1}{5} M$$

39.
$$\Pi: 0 \le x \le a, \quad 0 \le y \le b, \quad 0 \le z \le c$$

(a)
$$I_z = \int_0^a \int_0^b \int_0^c \frac{M}{abc} (x^2 + y^2) dz dy dx = \frac{1}{3} M(a^2 + b^2)$$

(b)
$$I_M = I_z - d^2 M = \frac{1}{3} M (a^2 + b^2) - \frac{1}{4} (a^2 + b^2) M = \frac{1}{12} M (a^2 + b^2)$$

parallel axis theorem (16.5.7)

(c)
$$I = I_M + d^2 M = \frac{1}{12} M (a^2 + b^2) + \frac{1}{4} a^2 M = \frac{1}{3} M a^2 + \frac{1}{12} M b^2$$

parallel axis theorem (16.5.7)

40.
$$V = \int_{1}^{2} \int_{1}^{2} \int_{-2}^{1+x+y} dz \, dy \, dx = \int_{1}^{2} \int_{1}^{2} (3+x+y) \, dy \, dx = 6$$

$$\overline{x}V = \int_{1}^{2} \int_{1}^{2} \int_{-2}^{1+x+y} x \, dz \, dy \, dx = \frac{109}{12} \implies \overline{x} = \frac{109}{72} = \overline{y} \quad \text{by symmetry}$$

$$\overline{z}V = \int_{1}^{2} \int_{1}^{2} \int_{-2}^{1+x+y} z \, dz \, dy \, dx = \frac{73}{12} \implies \overline{z} = \frac{73}{72}.$$

41.
$$M = \int_0^1 \int_0^1 \int_0^y k \left(x^2 + y^2 + z^2 \right) dz dy dx = \int_0^1 \int_0^1 k \left(x^2 y + y^3 + \frac{1}{3} y^3 \right) dy dx$$
$$= \int_0^1 k \left(\frac{1}{2} x^2 + \frac{1}{3} \right) dx = \frac{1}{2} k$$

$$(x_M, y_M, z_M) = \left(\frac{7}{12}, \frac{34}{45}, \frac{37}{90}\right)$$

- 42. T is symmetric (a) about the yz-plane, (b) about the xz-plane, (c) about the xy-plane,
 - (d) about the origin.
- 43. (a) 0 by symmetry

896 SECTION 18.4

Therefore,

$$y = e^{2x} \left(-\frac{1}{3}x \right) + xe^{2x} \left(\frac{1}{3} \ln|x| \right) = -\frac{1}{3} xe^{2x} + \frac{1}{3} x \ln|x| e^{2x}$$

Note: Since $u = -\frac{1}{3} xe^{2x}$ is a solution of the reduced equation,

$$y = \frac{1}{3} x \ln |x| e^{2x}$$

is also a particular solution of the given equation.

32. $r^2 + 4 = 0 \implies r = \pm 2i$. Fundamental solutions: $u_1 = \cos 2x, u_2 = \sin 2x$.

Wronskian: $W = u_1 u_2' - u_1' u_2 = 2\cos^2 2x + 2\sin^2 2x = 2;$ $\phi(x) = \sec^2 2x$

$$z_1 = -\int \frac{u_2\phi}{W} dx = -\int \frac{\sin 2x}{2\cos^2 2x} dx = \sec 2x,$$

$$z_2 = \int \frac{u_1 \phi}{W} dx = \int \frac{\cos 2x}{2 \cos^2 2x} dx = \frac{1}{2} \int \sec 2x \, dx = \ln|\sec 2x + \tan 2x|.$$

Therefore $y_p = z_1 u_1 + z_2 u_2 = \sec 2x \cos 2x + \ln|\sec 2x + \tan 2x| \sin 2x = 1 + \ln|\sec 2x + \tan 2x| \sin 2x$.

33. First consider the reduced equation y'' + 4y' + 4y = 0. The characteristic equation is:

$$r^2 + 4r + 4 = (r+2)^2 = 0$$

and $u_1(x) = e^{-2x}$, $u_2(x) = xe^{-2x}$ are fundamental solutions. Their Wronskian is given by

$$W = u_1 u_2' - u_2 u_1' = e^{-2x} \left(e^{-2x} - 2xe^{2x} \right) - xe^{-2x} (-2e^{-2x}) = e^{-4x}.$$

Using variation of parameters, a particular solution of the given equation will have the form

$$y = u_1 z_1 + u_2 z_2,$$

where

$$z_1 = -\int \frac{xe^{-2x} (x^{-2}e^{-2x})}{e^{-4x}} dx = -\int \frac{1}{x} dx = -\ln|x|$$

$$z_2 = \int \frac{e^{-2x} (x^{-2} e^{-2x})}{e^{-4x}} dx = \int \frac{1}{x^2} dx = -\frac{1}{x}$$

Therefore,

$$y = e^{-2x} \left(-\ln|x|\right) + xe^{-2x} \left(-\frac{1}{x}\right) = -e^{-2x} \ln|x| - e^{-2x}.$$

Note: Since $u = -e^{-2x}$ is a solution of the reduced equation, we can take

$$y = \frac{1}{3} x \ln|x| e^{2x}$$

34. $r^2 + 2r + 1 = 0 \implies r = -1$. Fundamental solutions: $u_1 = e^{-x}$, $u_2 = xe^{-x}$.

Wronskian: $W = u_1 u_2' - u_1' u_2 = (1 - x)e^{-2x} + xe^{-2x} = e^{-2x};$ $\phi(x) = e^{-x} \ln x.$

$$z_1 = -\int \frac{u_2 \phi}{W} dx = -\int \frac{x e^{-x} e^{-x} \ln x}{e^{-2x}} dx = -\int x \ln x dx = -\frac{1}{2} x^2 \ln x + \frac{x^2}{4},$$