STUDENT STUDY GUIDE AND SOLUTIONS MANUAL FOR ATKINS AND JONES'S

THE QUEST FOR INSIGHT

Fifth Edition

JOHN KRENOS / JOSEPH POTENZA LAURENCE LAVELLE / YINFA MA / CARL HOEGER

SOLUTIONS MANUAL

1.103 The ionization energies of the s-block metals are considerably lower, thus making it easier for them to lose electrons in chemical reactions.
1.105
(a) metal;
(b) nonmetal;
(c) metal;
(d) metalloid;
(e) metalloid;
(f) metal
1.107 The peaks observed in the PES spectra correspond to orbital energies; for each energy value seen, a corresponding orbital is present. Thus, if two values are seen in the PES spectrum, that atom has two orbitals (a $1 s$ and a $2 s$); one can then use ionization energies to determine the identity of the element. See Figure 1.52 and Appendix 2 for the successive ionization energies of the elements.
(a) The observed values ($7.30 \mathrm{MJ} \cdot \mathrm{mol}^{-1}$ and $0.52 \mathrm{MJ} \cdot \mathrm{mol}^{-1}$) correspond respectively to the second ($7300 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$) and first $\left(519 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ ionization energies of $\mathrm{Li}\left(1 s^{2} 2 s^{1}\right)$.
(b) The PES values observed $\left(1.6 \mathrm{MJ} \cdot \mathrm{mol}^{-1}\right.$ and $\left.0.90 \mathrm{MJ} \cdot \mathrm{mol}^{-1}\right)$ correspond respectively to the second $\left(1760 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ and first ($900 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$) ionization energies of $\mathrm{Be}\left(1 s^{2} 2 s^{2}\right)$.
1.109 (a) $\frac{v}{\mathrm{c}}=3600 \mathrm{~cm}^{-1}$
$v=\mathrm{c}\left(3600 \mathrm{~cm}^{-1}\right)$
$v=\left(2.99792 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)\left(3600 \mathrm{~cm}^{-1}\right)$
$v=\left(2.99792 \times 10^{10} \mathrm{~cm} \cdot \mathrm{~s}^{-1}\right)\left(3600 \mathrm{~cm}^{-1}\right)$
$v=1.1 \times 10^{14} \mathrm{~s}^{-1}$
(b) From $E=h v: E=\left(6.62608 \times 10^{34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(1.079 \times 10^{14} \mathrm{~s}^{-1}\right)$
$=7.2 \times 10^{-20} \mathrm{~J}$.
(c) 1.00 mol of molecules $=6.022 \times 10^{23}$ molecules, so the energy absorbed by 1.00 mol will be
3.13 The Lewis structures are

(b) $\begin{aligned} & : \ddot{C}: \ddot{:} \\ & \because: 口\end{aligned}$
(c)

d) $\left[\begin{array}{c}\mathrm{H}-\ddot{\mathrm{C}}-\mathrm{H} \\ \dot{H}\end{array}\right]^{-}$
(a) The shape of CF, Cl is tetrahedral; all halogen- $\mathrm{C}-$ halogen angles should be approximately 109.5°. AX_{4};
(b) TeCl_{+}molecules will be see saw shaped with $\mathrm{Cl}-\mathrm{Te}-\mathrm{Cl}$ bond angles of approximately 90° and 120°. AX E_{4};
(c) COF_{2} molecules will be trigonal planar with $\mathrm{F}-\mathrm{C} \quad \mathrm{F}$ and $\mathrm{O}-\mathrm{C}-\mathrm{F}$ angles of 120°. AX_{3};
(d) CH_{j}^{-}ions will be trigonal pyramidal with $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angles of slightly less than $109.5^{\circ} . \mathrm{AX}_{3} \mathrm{E}$
3.15 (a) The angles represented by a and b are expected to be about 120°, while c is expected to be about 109.5° in 2, 4-pentanedione. All of the angles are expected to be about 120° in the acetylacetonate ion.
(b) The major difference arises at the C of the original $s p^{3}$-hybridized CH_{2} group, which upon deprotonation and resonance goes to $s p^{2}$ hybridization with only three groups attached (the double-headed arrow is read as "in resonance with"):

3.17

(a) slightly less than 120:
(b) 180°;
(c) 180°;
(d) slightly less then 109.5°
5.23 (a) cis-Dichloroethene is polar, whereas trans-dichlorocthene, whose individual bond dipole moments cancel, is nonpolar. Therefore, cisdichloroethene has the greater intermolecular forces and the greater surface tension. (b) Surface tension of liquids decreases with increasing temperature as a result of thermal motion as temperature rises. Increased thermal motion allows the molecules to more easily break away from each other, which manifests itself as decreased surface tension.
5.25 At $50^{\circ} \mathrm{C}$ all three compounds are liquids. $\mathrm{C}_{6} \mathrm{H}_{6}$ (nonpolar) $<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$ (polar, but no hydrogen bonding) $<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ (polar and with hydrogen bonding). The viscosity will show the same ordering as the boiling points. which are $80^{\circ} \mathrm{C}$ for $\mathrm{C}_{6} \mathrm{H}_{6}, 169^{\circ} \mathrm{C}$ for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}, 182^{\circ}$ for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$.
$5.27 \mathrm{CH}_{4},-162^{\circ} \mathrm{C} ; \mathrm{CH}_{3} \mathrm{CH}_{3},-88.5^{\circ} \mathrm{C} ;\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3} .28^{\circ} \mathrm{C}$;
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}, 36^{\circ} \mathrm{C} ; \mathrm{CH}_{3} \mathrm{OH}, 64.5^{\circ} \mathrm{C} ; \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, 78.3^{\circ} \mathrm{C}$,
$\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}, 82.5^{\circ} \mathrm{C}$; $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH}$ (cyclic, but not aromatic), $140^{\circ} \mathrm{C}$;
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3} \mathrm{OH}$ (aromatic ring), $205^{\circ} \mathrm{C} ; \mathrm{OHCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{OH}, 290^{\circ} \mathrm{C}$
5.29 (a) hydrogen bonding; (b) London dispersion forces increase
5.31 Using $h=\frac{2 y}{g d r}$ we can calculate the height. For water:
$r=\frac{1}{2}$ diameter $=\frac{1}{2}(0.15 \mathrm{~mm})\left(\frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}\right)=7.5 \times 10^{-5} \mathrm{~m}$
$d=0.997 \mathrm{~g} \cdot \mathrm{~cm}^{-3}\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{10^{61} \mathrm{~cm}^{3}}{\mathrm{~m}^{3}}\right)=9.97 \times 10^{2} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$
$h=\frac{2\left(72.75 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}^{-1}\right)}{\left(9.81 \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)\left(9.97 \times 10^{2} \mathrm{~kg} \cdot \mathrm{~m}^{-3}\right)\left(7.5 \times 10^{-5} \mathrm{~m}\right)}=0.20 \mathrm{~m}$ or 200 mm
Remember that $1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-2}$

There is a correlation between the bond dissociation energy and the free energy of formation of the atomic species, but the relationship is clearly not linear.

For the heavier three halogens, there is a trend to decreasing free energy of formation of the atoms as the element becomes heavier, but fluorine is anomalous. The $F-F$ bond energy is lower than expected, owing to repulsions of the lone pairs of electrons on the adjacent F atoms because the $F-F$ bond distance is so short.
10.109 (a) Using the thermodynamic data in Appendix 2A:
$\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Br}(\mathrm{g})$
$\Delta G^{\circ}=2\left(82.40 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)-3.11 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}=161.69 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ $K=\mathrm{e}^{-\Lambda G^{\circ} / R T}=4.5 \times 10^{-29}$

For equilibrium constant calculations, this is reasonably good agreement with the value obtained from part (a), especially if one considers that ΔH° will not be perfectly constant over so large a temperature range.
(b) We will use data from Appendix 2 A to calculate the vapor pressure of bromine:

Because we are not given v, it is easiest to make a relative comparison by taking the ratio of v for the $\mathrm{C}-\mathrm{D}$ molecule versus v for the $\mathrm{C}-\mathrm{H}$ molecule:
$\frac{v_{\mathrm{C}-\mathrm{D}}}{v_{\mathrm{C}-\mathrm{H}}}=\frac{1}{\frac{2 \pi}{\frac{k}{\mu_{\mathrm{C}-\mathrm{D}}}}} \frac{1}{2 \pi} \sqrt{\frac{k}{\mu_{\mathrm{C}-\mathrm{H}}}}=\sqrt{\frac{\mu_{\mathrm{C}-\mathrm{H}}}{\mu_{\mathrm{C}-\mathrm{D}}}}=\sqrt{\frac{\frac{m_{\mathrm{C}} m_{\mathrm{H}}}{\frac{m_{\mathrm{C}}+m_{\mathrm{H}}}{m_{\mathrm{C}} m_{\mathrm{B}}}}}{m_{\mathrm{C}}+m_{\mathrm{B}}}}=\sqrt{\frac{\frac{(12.011)(1.0078)}{12.011+1.0078}}{\frac{(12.011)(2.0140)}{12.011+2.0140}}}$
$=\sqrt{\frac{\left(\frac{12.105}{13.019}\right)}{\left(\frac{24.190}{14.025}\right)}}=0.73422$
We would thus expect the vibrational frequency for the $\mathrm{C}-\mathrm{D}$ bond to be approximately 0.73 times the value for the $\mathrm{C}-\mathrm{H}$ bond (lower in energy).
17.57 To determine the effective half-life we need to determine the effective rate constant, k_{E}. This constant is cqual to the sum of the biological rate constant (k_{B}) and the radioactive decay rate constant $\left(k_{\mathrm{R}}\right)$, both of which can be obtained from the respective half-lives:
$k_{\mathrm{F} .}=k_{\mathrm{B}}+k_{\mathrm{k}}=\frac{\ln 2}{90.0 \mathrm{~d}}+\frac{\ln 2}{87.4 \mathrm{~d}}=1.56 \times 10^{-2} \mathrm{~d}^{-1}$
$t_{1 / 2}($ effective $)=\frac{\ln 2}{1.56 \times 10^{2} \mathrm{~d}^{-1}}=44.4 \mathrm{~d}$
17.59 Remember to convert g to kg .
(a) $E=m c^{2}=\left(1.0 \times 10^{-3} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)^{2}$

$$
=9.0 \times 10^{13} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}=9.0 \times 10^{13} \mathrm{~J}
$$

(b) $E=m c^{2}=\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)^{2}$

$$
=8.20 \times 10^{-14} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}=8.20 \times 10^{-14} \mathrm{~J}
$$

(c) $E=m c^{2}$
$E=\left(1.0 \times 10^{-35} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)^{2}=90 . \mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}=90 . \mathrm{J}$

