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Applied Quantum Mechanics

Chapter 1 Problems and Solutions

LAST NAME FIRST NAME
Useful constants MKS (SI)
Speed of light in free space c = 2.99792458° 10° m s
Planck’s constant h = 6.58211889(26) 10 eV s
h = 1.054571596(82) " 10°*' J s
Electron charge e = 1.602176462(63) " 10 °C
Electron mass m, = 9.10938188(72) = 10™* kg
Neutron mass m, = 1.67492716(13) " 10™* kg
Proton mass m, = 1.67262158(13) " 10™* kg
Boltzmann constant ks = 1.3806503(24) " 102 JK™
kg = 8.617342(15) " 10° eV K™
Permittivity of free space e, = 8.8541878° 10 ? Fm™

Permeability of free space m=4p 10'Hm*
Speed of light in free space c = 1oJem

Avagadro’s number N, = 6.02214199(79) ~ 10% mol™
Bohr radius as = 0.52917721(19)" 10 °m
_ 4peyh”
BT mee?

Inverse fine-structure constant a-! = 137.0359976(50)
_ 4peghic
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PROBLEM 1
A metal ball isburied in an ice cube that isin a bucket of water.

(a) If the ice cube with the metal ball is initially under water, what happens to the water level
when the ice melts?

(b) If the ice cube with the metal ball isinitially floating in the water, what happens to the water
level when the ice melts?

(c) Explain how the Earth’s average sea level could have increased by at least 100 m compared
to about 20,000 years ago.

(d) Estimate the thickness and weight per unit area of the ice that melted in (c). Y ou may wish
to use the fact that the density of iceis 920 kg m= today the land surface area of the Earth is about
148,300,000 km? and water area is about 361,800,000 km?.

PROBLEM 2

Sketch and find the volume of the largest and smallest convex plug manufactured from a sphere
of radiusr = 1 cm to fit exactly into a circular hole of radius r = 1 cm, an isosceles triangle with
base 2 cm and a height h = 1 cm, and a half circle radiusr =1 cm and base 2 cm.

PROBLEM 3

An initially stationary particle mass m, is on a frictionless table surface and another particle
mass m, is positioned vertically below the edge of the table. The distance from the particle mass
m, to the edge of the table is |. The two particles are connected by a taught, light, inextensible
string of lengthL > I.

(a) How much time elapses before the particle mass m, is launched off the edge of the table?

(b) What is the subsequent motion of the particles?

(c) How is your answer for (a) and (b) modified if the string has spring constant k?

PROBLEM 4

The velocity of water waves in shallow water may be approximated as v = ./gh where g is the
acceleration due to gravity and h is the depth of the water. Sketch the lowest frequency standing
water wave in a5 m long garden pond that is 0.9 m deep and estimate its frequency.

PROBLEM 5

() What is the dispersion relation of a wave whose group velocity is half the phase velocity?
(b) What is the dispersion relation of awave whose group velocity is twice the phase velocity?
(c) What is the dispersion relation when the group velocity is four times the phase velocity?

PROBLEM 6

A stationary ground-based radar uses a continuous electromagnetic wave at 10 GHz frequency
to measure the speed of a passing airplane moving at a constant altitude and in a straight line at
1000 km hrl. What is the maximum beat frequency between the out going and reflected radar
beams? Sketch how the beat frequency varies as afunction of time. What happens to the beat fre-
quency if the airplane movesin an arc?
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PROBLEM 7

How would Maxwell’ s equations be modified if magnetic charge g (magnetic monopoles) were
discovered? Derive an expression for conservation of magnetic current and write down a general-
ized Lorentz force law that includes magnetic charge. Write Maxwell’ s equations with magnetic
chargeintermsof afield G = JeE +iJmH .

PROBLEM 8

18

The capacitance of a small metal spherein airis C, = 1.1° 10 F. A thin dielectric film
with relative permittivity e, = 10 uniformly coats the sphere and the capacitance increases to
2.2° 10" F. What isthe thickness of the dielectric film and what is the single electron charging
energy of the dielectric coated metal sphere?

PROBLEM 9

(a) A diatomic molecule has atoms with mass m; and m,. An isotopic form of the molecule has
atoms with mass m'y and m',. Find the ratio of vibration oscillation frequency w / w' of the two
mol ecul es.

(b) What is the ratio of vibrational frequencies for carbon monoxide isotope 12 (lZClGO) and
carbon monoxide isotope 13 (13C 0 )?

PROBLEM 10

(a) Find the frequency of oscillation of the particle of massmillustratedinthe Fig. The particle
isonly free to move along aline and is attached to a light spring whose other end is fixed at point A
located a distance | perpendicular to theline. A force Fgisrequired to extend the spring to length I.

(b) Part (a) describes a new type of child' s swing. If the child weighs 20 kg, the length | = 2.5
m, and the force F = 450 N, what is the period of oscillation?

Fixed
point A

Ll

y
Spring

Length, |

Mass, m

-
Displacement, -x

Applied quantum mechanics 3

Download full file from buklibry.com



https://buklibry.com/download/solutions-manual-of-applied-quantum-mechanics-by-levi-2nd-edition/

PROBLEM 1
Prove that particle flux (current) is zero if the one-dimensional exponential decaying wave func-

tion in tunnel barrier of energy Vg and finite thicknessL isy (x, t) = Be "™ where k isarea

positive number and particle energy E = Aw < V,.

PROBLEM 2

(a) Use a Taylor expansion to show that the second derivative of awavefunction y (x) sampled
at positions x; = jh,, where j is an integer and hg is a small fixed increment in distance x, may be
approximated as
iiy () = L) =2V 0 +y (%)

dx ho

(b) By keeping additional terms in the expansion, show that a more accurate approximation of

the second derivativeis

2

iy (X) - -y (Xj —2) + 16y (Xj—l) — 30y (xj) + 16y (xj+l) -y (Xj +2)
dx®

12n’

PROBLEM 3

Using the method outlined in Exercise 7 of Chapter 3 as a starting point, calculate numerically
the first four energy eigenvalues and eigenfunctions for an electron with effective mass
m, = 0.07" m, confined to a potential well V/(x) = V, of width L = 10 nm with periodic boundary
conditions.

Periodic boundary conditions require that the wave function at position x = 0 is connected
(wrapped around) to position x = L. The wave function and its first derivative are continuous and
smooth at this connection.

Y our solution should include plots of the eigenfunctions and a listing of the computer program
you used to calculate the eigenfunctions and eigenval ues.

PROBLEM 4

Using the method outlined in Exercise 7 of Chapter 3 as a starting point, calculate numerically
the first six energy eigenvalues and eigenfunctions for an electron with effective mass
m. = 0.07" m, confined to atriangular potential well of width L = 20 nm bounded by barriers of
infinite energy at x< 0 and x> L. Thetriangular potential well as afunction of distance x is given
by V(X) =V,  x/L whereVy=1¢eV.

Explain the change in shape of the wave function with increasing eigenenergy.

Y our solution should include plots of the eigenfunctions and a listing of the computer program
you used to calculate the eigenfunctions and eigenval ues.

PROBLEM 5

Calculate the transmission and reflection coefficient for an electron of energy E, moving from
left to right, impinging normal to the plane of a semiconductor heterojunction potential barrier of
energy V,, where the effective electron mass on the left-hand side is m; and the effective electron
mass on the right-hand sideis m, .

If the potential barrier energy is Vy = 1.5 eV and the ratio of effective electron mass on either

side of the heterointerface is m; / m, = 3, at what particle energy is the transmission coefficient
unity? What is the transmission coefficient inthe imitE® ¥ ?
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(c) For the square lattice with nearest neighbor interactions only, we have

Nearest neighbor tight binding density of states,  =0.1t, natoms=100

Nearest neighbor tight binding dispersion, y =0.1t, natoms=100
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Notice that the band edge energy for simple cubic lattice of dimension d occurs at +2td.

(d) For the hexagonal lattice with second nearest neighbor interactions

Nearest neighbor tight binding density of states, y =0.1t, natoms=100

Nearest neighbor tight binding density of states, y =0.1t, natoms=100
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which is different compared to the result for the hexagonal lattice with only nearest
neighbor interactions shown in the following figure.
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(b) Tofind the value of the product in uncertainty in position Dx and momentum Dp, for
the first exited state of a particle of mass m in a one-dimensiona harmonic oscillator
potential we use

Dx = (&x?fi- axm)i/?

and

Dp. = (@p%ii— ap,ir) 2

and since axit = 0 and ap,i = 0 we will be interested in finding the value of &xf
and ap?,f. Starting with &x?f , we have

s = @ _041h+ b1 = B 0416b+ b'D'+ bb'+ BB =
&= Z0al(b+b) 1 = Z0abb+ b'b'+ bb'+ b=

and one can see that for the general state |nf one has &x’fi = gez%-g(l +2n). Now
W

turning our attention to ap?,f we have

P ~ MWO 2z 170t ©\24x mwg - N
40201 = g@Tgau(b —b)’j1Ai = g@Tgan— bb—b

and one can see that for the general state |nf* one has éﬁiﬁ = @ﬂvg(l +2n).

e 2
For the particular case we are interested in [n = 1F and the uncertainty product is
DXDp, = (&fidp%™® = Sh

For the general state |nf the uncertainty product DxDp, = g (1+2n)

Solution 3
(a) We start with the reasonabl e assumption that the expectation value of an observable

associated with operator A evolves smoothly in time such that

e = B2
dt Dt
which may be written as
Dt =

— A

a1
In this problem the operator A is time-independent so that
(o I R S | [V R SRS
—aAn = - gdHA]A+ &-ARh = - gH,A]R
dt ha[ ] qt ha[ ]
since ’ﬂAﬁ =0

1t

In addition, the generalized uncertainty relation for operators A and B is
DADB 3 12 [ 4A, BA

which may be re-written as

2DADB3 [4[A, B]A
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Final

LAST NAME

FIRST NAME

Speed of light in free space

Planck’s constant

Electron charge

Electron mass

Neutron mass

Proton mass

Boltzmann

constant

Permittivity of free space
Permeability of free space
Speed of light in free space

Avagadro’s number

SI-MKS

= 2.99792458 x 10° m s '
= 6.58211889 x 10 ° eV s
= 1054571596 x 10 J s
e = 1.602176462 x 10°°C
m, = 9.10938188 x 10~ kg
m, = 167492716 x 10" kg
m, = 1.67262158 x 10" kg
ky = 13806503 x 10 > J K
ky = 8.617342%10° eV K
€, = 8.8541878 x 10 " Fm’'
Ho = 4Ttx 10" Hm'"'

c = l/m

N, = 6.02214199 x 10 mol '

St O

Bohr radius ag = 0.52917721%10 ’m
ame,h’
dg = >
mye
Inverse fine-structure constant a-! = 137.0359976
q = 4T hic
e2
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