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Applied Quantum Mechanics

Chapter 1 Problems and Solutions

LAST NAME FIRST NAME

Useful constants MKS  (SI)

Speed of light in free space 

Planck’s constant

Electron charge

Electron mass

Neutron mass

Proton mass

Boltzmann constant

Permittivity of free space

Permeability of free space

Speed of light in free space

Avagadro’s number

Bohr radius

Inverse fine-structure constant

c 2.99792458 108×  m  s 1–=

h 6.58211889 26( ) 10 16–× eV s=

h 1.054571596 82( ) 10 34–×  J s=

e 1.602176462 63( ) 10 19–× C=

m0 9.10938188 72( ) 10 31–×  kg=

mn 1.67492716 13( ) 10 27–×  kg=

mp 1.67262158 13( ) 10 27–×  kg=

kB 1.3806503 24( ) 10 23–×  J K 1–=

kB 8.617342 15( ) 10 5–×  eV  K 1–=

ε0 8.8541878 10 12–×  F m 1–=

µ0 4π 10 7–×  H  m 1–=

c 1 ε0µ0⁄=

NA 6.02214199 79( ) 1023×  mol 1–=

aB 0.52917721 19( ) 10–×10 m=

aB
4πε0h2

m0e2-----------------=

α 1– 137.0359976 50( )=

α 1– 4πε0hc
e2------------------=
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PROBLEM 1
A metal ball is buried in an ice cube that is in a bucket of water.

(a) If the ice cube with the metal ball is initially under water, what happens to the water level

when the ice melts?

(b) If the ice cube with the metal ball is initially floating in the water, what happens to the water

level when the ice melts?

(c) Explain how the Earth’s average sea level could have increased by at least 100 m compared

to about 20,000 years ago.

(d) Estimate the thickness and weight per unit area of the ice that melted in (c).  You may wish

to use the fact that the density of ice is 920 kg m-3, today the land surface area of the Earth is about

148,300,000 km2 and water area is about 361,800,000 km2.

PROBLEM 2

Sketch and find the volume of the largest and smallest convex plug manufactured from a sphere

of radius r = 1 cm to fit exactly into a circular hole of radius r = 1 cm, an isosceles triangle with

base 2 cm and a height h = 1 cm, and a half circle radius r = 1 cm and base 2 cm.

PROBLEM 3

An initially stationary particle mass m1 is on a frictionless table surface and another particle

mass m2 is positioned vertically below the edge of the table.   The distance from the particle mass

m1 to the edge of the table is l.  The two particles are connected by a taught, light, inextensible

string of length L > l.  

(a) How much time elapses before the particle mass m1 is launched off the edge of the table?

(b) What is the subsequent motion of the particles?

(c) How is your answer for (a) and (b) modified if the string has spring constant κ?

PROBLEM 4

The velocity of water waves in shallow water may be approximated as  where g is the

acceleration due to gravity and h is the depth of the water.  Sketch the lowest frequency standing

water wave in a 5 m long garden pond that is 0.9 m deep and estimate its frequency.

PROBLEM 5

(a) What is the dispersion relation of a wave whose group velocity is half the phase velocity?

(b) What is the dispersion relation of a wave whose group velocity is twice the phase velocity?

(c) What is the dispersion relation when the group velocity is four times the phase velocity?

PROBLEM 6

A stationary ground-based radar uses a continuous electromagnetic wave at 10 GHz frequency

to measure the speed of a passing airplane moving at a constant altitude and in a straight line at

1000 km hr-1.  What is the maximum beat frequency between the out going and reflected radar

beams?  Sketch how the beat frequency varies as a function of time.  What happens to the beat fre-

quency if the airplane moves in an arc?

v gh=
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PROBLEM 7

How would Maxwell’s equations be modified if magnetic charge g (magnetic monopoles) were

discovered?  Derive an expression for conservation of magnetic current and write down a general-

ized Lorentz force law that includes magnetic charge.  Write Maxwell’s equations with magnetic

charge in terms of a field .

PROBLEM 8

The capacitance of a small metal sphere in air is .  A thin dielectric film

with relative permittivity  uniformly coats the sphere and the capacitance increases to

.  What is the thickness of the dielectric film and what is the single electron charging

energy of the dielectric coated metal sphere?

PROBLEM 9

(a) A diatomic molecule has atoms with mass m1 and m2.  An isotopic form of the molecule has

atoms with mass  m'1 and m'2.  Find the ratio of vibration oscillation frequency ω / ω' of the two

molecules.

(b) What is the ratio of vibrational frequencies for carbon monoxide isotope 12 ( ) and

carbon monoxide isotope 13 ( )?

PROBLEM 10

(a) Find the frequency of oscillation of the particle of  mass m illustrated in the Fig.  The particle

is only free to move along a line and is attached to a light spring whose other end is fixed at point A

located a distance l perpendicular to the line.  A force F0 is required to extend the spring to length l.

(b) Part (a) describes a new type of child’s swing.  If the child weighs 20 kg, the length l = 2.5

m, and the force F0 = 450 N, what is the period of oscillation?

G εE i µH+=

C0 1.1 10 18– F×=

εr1
10=

2.2 10 18–  F×

C O1612

C O1613

Fixed

Displacement, -x

Mass, m

Length, l

point A

Spring
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PROBLEM 1
Prove that particle flux (current) is zero if the one-dimensional exponential decaying wave func-

tion in tunnel barrier of energy V0 and finite thickness L is , where κ is a real
positive number and particle energy .

PROBLEM 2

(a) Use a Taylor expansion to show that the second derivative of a wavefunction  sampled

at positions , where j is an integer and h0 is a small fixed increment in distance x, may be

approximated as

(b) By keeping additional terms in the expansion, show that a more accurate approximation of

the second derivative is

PROBLEM 3

Using the method outlined in Exercise 7 of Chapter 3 as a starting point, calculate numerically
the first four energy eigenvalues and eigenfunctions for an electron with effective mass

 confined to a potential well V(x) = V0 of width L = 10 nm with periodic boundary
conditions.

Periodic boundary conditions require that the wave function at position x = 0 is connected
(wrapped around) to position x = L.  The wave function and its first derivative are continuous and
smooth at this connection.

Your solution should include plots of the eigenfunctions and a listing of the computer program
you used to calculate the eigenfunctions and eigenvalues.

PROBLEM 4

Using the method outlined in Exercise 7 of Chapter 3 as a starting point, calculate numerically
the first six energy eigenvalues and eigenfunctions for an electron with effective mass

 confined to a triangular potential well of width L = 20 nm bounded by barriers of
infinite energy at x < 0 and x > L.  The triangular potential well as a function of distance x is given
by V(x) = V0 × x / L where V0 = 1 eV.

Explain the change in shape of the wave function with increasing eigenenergy.
Your solution should include plots of the eigenfunctions and a listing of the computer program

you used to calculate the eigenfunctions and eigenvalues.

PROBLEM 5

Calculate the transmission and reflection coefficient for an electron of energy E , moving from
left to right, impinging normal to the plane of a semiconductor heterojunction potential barrier of
energy , where the effective electron mass on the left-hand side is  and the effective electron
mass on the right-hand side is .

If the potential barrier energy is V0 = 1.5 eV and the ratio of effective electron mass on either

side of the heterointerface is m1 / m2 = 3, at what particle energy is the transmission coefficient

unity?  What is the transmission coefficient in the limit E → ∞ ?

ψ x t,( ) Be κ x– iωt–=
E hω V0<=

ψ x( )

x j jh0=

x2

2

d

d ψ x j( )
ψ x j 1–( ) 2ψ x j( ) ψ x j 1+( )+–

h0
2

------------------------------------------------------------------=

x2

2

d
d ψ x j( )

ψ– x j 2–( ) 16+ ψ x j 1–( ) 30ψ x j( ) 16ψ x j 1+( ) ψ x j 2+( )–+–

12h0
2---------------------------------------------------------------------------------------------------------------------------------------=

m e
* 0.07 m0×=

m e
* 0.07 m0×=

V0 m1

m2
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(c)  For the square lattice with nearest neighbor interactions only, we have
 

and for the cubic lattice

Notice that the band edge energy for simple cubic lattice of dimension d occurs at ±2td.

(d) For the hexagonal lattice with second nearest neighbor interactions

which is different compared to the result for the hexagonal lattice with only nearest
neighbor interactions shown in the following figure.
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(b) To find the value of the product in uncertainty in position ∆x and momentum ∆px for
the first exited state of a particle of mass m in a one-dimensional harmonic oscillator
potential we use

and

and since  and  we will be interested in finding the value of 

and .  Starting with , we have

and one can see that for the general state  one has .  Now

turning our attention to  we have

and one can see that for the general state  one has .

For the particular case we are interested in  and the uncertainty product is

For the general state  the uncertainty product 

Solution 3
(a) We start with the reasonable assumption that the expectation value of an observable

associated with operator  evolves smoothly in time such that

which may be written as

In this problem the operator  is time-independent so that

since 

In addition, the generalized uncertainty relation for operators  and  is

which may be re-written as

x∆ x2〈 〉 x〈 〉 2–( ) 1 2/=

px∆ p2
x〈 〉 px〈 〉 2–( ) 1 2/=

x〈 〉 0= px〈 〉 0= x2〈 〉

p2
x〈 〉 x2〈 〉

x̂2〈 〉 h
2mω
------------ 

  1〈 | b̂ b̂
†

+( )
2

1| 〉 h
2mω
------------ 
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†
b̂

†
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†
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†
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------------= = =
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2mω
------------ 

  1 2n+( )=

p2
x〈 〉

p2
x〈 〉 hmω
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------------ 
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---------------= = =
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2
------------ 
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x px∆∆ x2〈 〉 p 2
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2
--- h= =

n| 〉 x px∆∆ h
2
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Â
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d Â〈 〉 ∆A
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-------=

∆t ∆ A
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Final

LAST NAME FIRST NAME

SI-MKS

Speed of light in free space 

Planck’s constant

Electron charge

Electron mass

Neutron mass

Proton mass

Boltzmann

constant

Permittivity of free space

Permeability of free space

Speed of light in free space

Avagadro’s number

Bohr radius

Inverse fine-structure constant

c 2.99792458 108×  m s 1–=

6.58211889 10 16–×  eV s=

1.054571596 10 34–×  J s=

e 1.602176462 10 19–× C=

m0 9.10938188 10 31–×  kg=

mn 1.67492716 10 27–×  kg=

mp 1.67262158 10 27–×  kg=

kB 1.3806503 10 23–×  J K 1–=

kB 8.617342 10 5–×  eV K 1–=

ε0 8.8541878 10 12–×  F m 1–=

µ0 4π 10 7–×  H m 1–=

c 1 ε0µ0⁄=

NA 6.02214199 1023×  mol 1–=

aB 0.52917721 10–×10 m=

aB
4πε0

2

m0e2-----------------=

α 1– 137.0359976=

α 1– 4πε0 c
e2------------------=
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