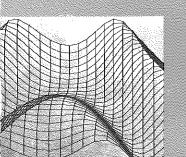
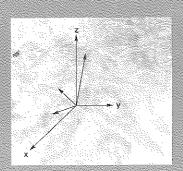
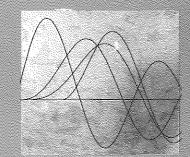
Solutions Manual

to accompany

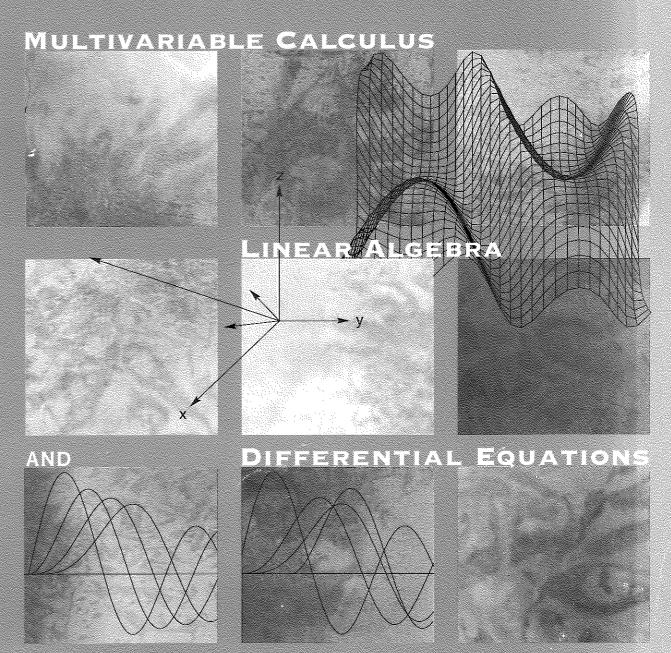
STANLEY GROSSMAN







Leon Gerber

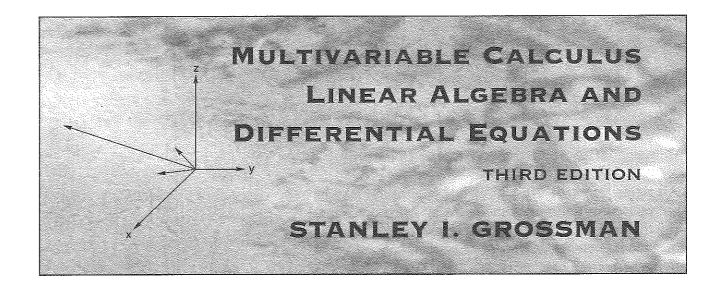


THIRD EDITION

Download full file from buklibry.com

Student Solutions Manual

to accompany



Leon Gerber

St. John's University

SAUNDERS COLLEGE PUBLISHING
HARCOURT BRACE COLLEGE PUBLISHERS

Fort Worth Philadelphia San Diego New York Orlando San Antonio Austin Toronto Montreal London Sydney Tokyo https://buklibry.com/download/solutions-manual-of-accompany-multivariable-calculus-linear-algebra-and-differential-equations-by-gerber-grossman-3rd-edition/

Copyright ©1995 by Harcourt Brace & Company

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to: Permissions Department, Harcourt Brace & Company, 8th Floor, Orlando, Florida 32887 - 6777.

Printed in the United States of America.

Gerber: Student Solutions Manual for <u>Multivariable Calculus</u>, <u>Linear Algebra & Differential Equations 3E:</u> Grossman

ISBN 0-03-010196-4

567 021 987654321

TABLE OF CONTENTS

PR	EFACE	
1	VECTORS IN THE PLANE AND IN SPACE	1
2	VECTOR FUNCTIONS AND PARAMETRIC EQUATIONS	25
3	DIFFERENTIATION OF FUNCTIONS OF TWO OR MORE VARIABLES	45
4	MULTIPLE INTEGRATION	
5	INTRODUCTION TO VECTOR ANALYSIS	92
6	SYSTEMS OF LINEAR EQUATIONS AND MATRICES	111
7	DETERMINANTS	132
8	VECTOR SPACES AND LINEAR TRANSFORMATIONS	139
9	CALCULUS IN \mathbb{R}^n	162
10	ORDINARY DIFFERENTIAL EQUATIONS	170
11	SYSTEMS OF DIFFERENTIAL EQUATIONS	
12	TAYLOR POLYNOMIALS, SEQUENCES, AND SERIES	213
	PPENDIX 1 MATHEMATICAL INDUCTION	
AF	PPENDIX 2 THE BINOMIAL THEOREM	235
AF	PPENDIX 3 COMPLEX NUMBERS	237
AF	PPENDIX 4 PROOF OF THE BASIC THEOREM ABOUT DETERMINANTS	238
AF	PPENDIX 5 EXISTENCE AND UNIQUENESS FOR FIRST-ORDER INITIAL-VALUE PROBLEMS	239
AF	PPENDIX 6 THE FOUNDATIONS OF VECTOR SPACE THEORY: THE EXISTENCE OF A BASIS	240
IN	DEX	24
ΑĪ	DDENDA AND CORRIGENDA TO THE TEXT	248

FIVE

INTRODUCTION TO VECTOR ANALYSIS

5.1 VECTOR FIELDS

Vector Field F(x), a vector-valued function of a vector. If $F = \nabla f$ for some function f, F is conservative and f is a potential for F.

Conservation of Energy $\frac{1}{2}m|x'|^2 + f(x) = \text{kinetic} + \text{potential energy} = C.$

Problems 5.1

In Problems 1-21, compute the gradient of the function.
1.
$$\nabla(x^2+y^2)^{-1/2}=-\frac{1}{2}(x^2+y^2)^{-3/2}\nabla(x^2+y^2)=-(x^2+y^2)^{-3/2}(x\mathbf{i}+y\mathbf{j})$$

3.
$$\nabla(x+y)^2 = 2(x+y)\nabla(x+y) = 2(x+y)(i+j)$$

5.
$$\nabla \cos(x-y) = -\sin(x-y)\nabla(x-y) = -\sin(x-y)(\mathbf{i}-\mathbf{j})$$

7.
$$\nabla [y \tan(y-x)] = -y \sec^2(y-x)\mathbf{i} + [\tan(y-x) + y \sec^2(y-x)]\mathbf{j}$$

9.
$$\nabla \sec(x+3y) = \sec(x+3y)\tan(x+3y)\nabla(x+3y) = \sec(x+3y)\tan(x+3y)(i+3j)$$

$$\mathbf{11.} \ \ f = \frac{x^2 - y^2}{x^2 + y^2} = 1 - \frac{2y^2}{x^2 + y^2} = \frac{2x^2}{x^2 + y^2} - 1. \ \ \nabla f = [\frac{2y^2}{(x^2 + y^2)^2} \cdot 2x]\mathbf{i} + [\frac{-2x^2}{(x^2 + y^2)^2} \cdot 2y]\mathbf{j} = \frac{4xy}{(x^2 + y^2)^2}[y\mathbf{i} - x\mathbf{j}]$$

13.
$$\nabla (x^2 + y^2 + z^2)^{1/2} = \frac{1}{2}(x^2 + y^2 + z^2)^{-1/2}\nabla (x^2 + y^2 + z^2) = (x^2 + y^2 + z^2)^{-1/2}(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$$

15. $\nabla \sin x \cos y \tan z = \cos x \cos y \tan z i - \sin x \sin y \tan z i + \sin x \cos y \sec^2 z k$

17.
$$\nabla(x \ln y - z \ln x) = (\ln y - z/x)i + (x/y)j - \ln xk$$

19.
$$\nabla[(y-z)e^{x+2y+3z}] = e^{x+2y+3z}[(y-z)\mathbf{i} + (1+2y-2z)\mathbf{j} + (-1+3y-3z)\mathbf{k}]$$

21.
$$\nabla \ln \frac{\sqrt{(x-1)^2 + y^2}}{\sqrt{(x+1)^2 + y^2}} = \frac{1}{2} \nabla \{ \ln[(x-1)^2 + y^2] - \ln[(x+1)^2 + y^2] \}$$

$$= \left[\frac{x-1}{(x-1)^2 + y^2} - \frac{x+1}{(x+1)^2 + y^2} \right] \mathbf{i} + \left[\frac{y}{(x-1)^2 + y^2} - \frac{y}{(x+1)^2 + y^2} \right] \mathbf{i}$$

$$= \frac{[(x-1)(x^2 + y^2 + 1 + 2x) - (x+1)(x^2 + y^2 + 1 - 2x)]}{[(x-1)^2 + y^2][(x+1)^2 + y^2]} \mathbf{i}$$

$$y \frac{x^2 + y^2 + 1 + 2x - (x^2 + y^2 + 1 - 2x)}{[(x-1)^2 + y^2][(x+1)^2 + y^2]} \mathbf{j} = \frac{2(x^2 - y^2 - 1)\mathbf{i} + 4xy\mathbf{j}}{[(x-1)^2 + y^2][(x+1)^2 + y^2]}$$

The figure shows $\frac{1}{8}\nabla f$, which is unbounded near $(\pm 1,0)$.

23. Show that
$$yi + xj$$
 is conservative. $\Rightarrow -\nabla(-xy) = yi + xj$

25. Show that $-\alpha \mathbf{x}/|\mathbf{x}|^k$ is conservative.

▶ If
$$k = 2$$
, then $-\nabla [\frac{1}{2}\alpha \ln(x^2 + y^2 + z^2)] = -\alpha(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})/(x^2 + y^2 + z^2) = -\alpha \mathbf{x}/|\mathbf{x}|^2$. Otherwise $-\nabla [\alpha(x^2 + y^2 + z^2)^{1-k/2}] = [-2(1 - \frac{1}{2}\mathbf{k})/(2 - \mathbf{k})]\alpha(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})(x^2 + y^2 + z^2)^{-k/2} = -\alpha \mathbf{x}/|\mathbf{x}|^k$

27. Show that yi - xj is not conservative. $\triangleright -x = f_y \Rightarrow f = -xy + g(y) \Rightarrow f_x = -y$ which contradicts $f_x = y$.

5.2 WORK AND LINE INTEGRALS

Piecewise Smooth Curve C: join a finite number of smooth curves end to end.

Work = Line Integral
$$W = \int_C \mathbf{F}(\mathbf{x}) \cdot d\mathbf{x} = \int_a^b \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt = \int_a^b [\mathbf{P}(x(t), y(t)) \mathbf{x}'(t) + \mathbf{Q}(x(t), y(t)) \mathbf{y}'(t)] dt$$
All parametrizations of the path yield the same result. See Problem 36.

If
$$\mathbf{F} = P(x)\mathbf{i} + Q(y)\mathbf{j}$$
 then $\int_C \mathbf{F}(\mathbf{x}) \cdot d\mathbf{x} = \int P(x)dx + \int Q(y)dy$.

Problems 5.2

In Problems 1-6, find the work W joules when the force F newtons in direction θ moves an object \overline{PQ} meters.

1.
$$F = 3$$
, $\theta = 0$, $P = (2,3)$, $Q = (1,7)$ $\Rightarrow F = (3,0)$, $d = (1,7) - (2,3) = (-1,4)$. $W = F \cdot d = -3$

3.
$$F = 6$$
, $\theta = \frac{1}{4}\pi$, $P = (2,3)$, $Q = (-1,4)$

$$\mathbb{F} = (6\cos\frac{1}{4}\pi, 6\sin\frac{1}{4}\pi) = (3\sqrt{2}, 3\sqrt{2}). \ \mathbf{d} = (-1, 4) - (2, 3) = (-3, 1). \ \mathbf{W} = -6\sqrt{2}$$

5.
$$F = 4$$
, θ has direction $2i + 3j$, $P = (2,0)$, $Q = (-1,3)$

$$\mathbb{F} = 4(2,3)/\sqrt{2^2+3^2} = (8,12)/\sqrt{13}$$
. $\mathbf{d} = (-1,3)-(2,0) = (-3,3)$. $\mathbb{W} = 12/\sqrt{13}$

n Problems 7-34, calculate
$$W = \int \mathbf{F}(\mathbf{x}) \cdot d\mathbf{x}$$
. In Problems 27-43, W is the number of newtons.

In Problems 7-34, calculate W =
$$\int_C \mathbf{F}(\mathbf{x}) \cdot d\mathbf{x}$$
. In Problems 27-43, W is the number of newtons.
7. $\mathbf{F} = (xy, ye^x), \ x = 2 - t, \ y = 1, \ 0 \le t \le 2$. W = $\int_0^2 (2 - t, e^{2 - t}) \cdot (-1, 0) dt = \int_0^2 (t - 2) dt = \frac{(t - 2)^2}{2} \Big|_0^2 = -2$

9.
$$\mathbf{F} = (x^2, y^2)$$
; C is segment $(0,0)$ to $(2,4) \Rightarrow x = 2t$, $y = 4t$, $0 \le t \le 1$. $W = \int_0^1 \left[(2t)^2, (4t)^2 \right] \cdot [2, 4] dt = \int (4t^2, 16t^2) \cdot (2, 4) dt = \int (4t^2 \cdot 2 + 16t^2 \cdot 4) dt = \int 72t^2 dt = 24t^3 \Big|_0^1 = 24$

11.
$$\mathbf{F} = (xy, y - x)$$
; C is segment $y = 2x - 4$ from $(1, -2)$ to $(2, 0) \Rightarrow x = t$, $y = 2t - 4$, $1 \le t \le 2$.

$$\mathbf{W} = \int_0^2 \left[t(2t - 4), 2t - 4 - t \right] \cdot [1, 2] dt = \int (2t^2 - 4t, t - 4) \cdot (1, 2) dt = \int \left[(2t^2 - 4t)1 + (t - 4)2 \right] dt$$

$$= \int (2t^2 - 2t - 8) dt = \left[\frac{2}{3}t^3 - t^2 - 8t \right]_1^2 = \frac{2}{3}(8 - 1) - (4 - 1) - 8(2 - 1) = -\frac{19}{3}$$

13.
$$\mathbf{F} = (xy, y - x)$$
; C is unit circle counterclockwise $\Rightarrow x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.

$$\mathbf{W} = \int_0^{2\pi} (\cos t \sin t, \sin t - \cos t) \cdot (-\sin t, \cos t) dt = \int [\cos t \sin t(-\sin t) + (\sin t - \cos t)\cos t] dt$$

$$= \int (-\cos t \sin^2 t + \sin t \cos t - \cos^2 t) dt = \left[-\frac{1}{3} \sin^3 t + \frac{1}{2} \sin^2 t - \frac{1}{2} \cos t \sin t - \frac{1}{2} t \right]_0^{2\pi} = -0 + 0 - 0 - \pi = -\pi$$

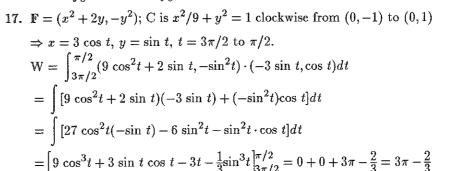
15.
$$\mathbf{F} = (xy, y - x); \ \mathbf{C}_1 = (0, 0)(1, 0) \Rightarrow x = t, \ y = 0, \ 0 \le t \le 1; \ \mathbf{C}_2 = (1, 0)(1, 1)$$

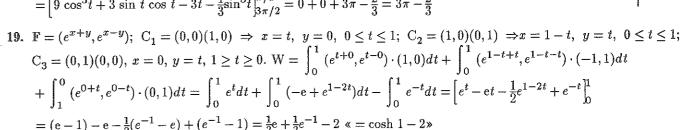
$$\Rightarrow x = 1, \ y = t, \ 0 \le t \le 1; \ \mathbf{C}_3 = (1, 1)(0, 0) \Rightarrow x = t, \ y = t, \ 1 \ge t \ge 0.$$

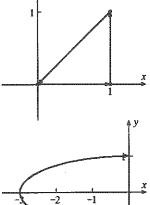
$$\mathbf{W} = \int_0^1 (t \cdot 0, 0 - t) \cdot (1, 0) dt + \int_0^1 (1 \cdot t, t - 1) \cdot (0, 1) dt + \int_1^0 (t \cdot t, t - t)(1, 1) dt$$

$$= \int_0^1 (0, -t) \cdot (1, 0) dt + \int_0^1 (t, t - 1) \cdot (0, 1) dt - \int_0^1 (t^2, 0) \cdot (1, 1) dt$$

$$= 0 + \int_0^1 (t - 1) dt - \int_0^1 t^2 dt = \frac{1}{2}(t - 1)^2 \Big|_0^1 - \frac{1}{3}t^3 \Big|_0^1 = -\frac{1}{2} - \frac{1}{3} = -\frac{5}{6}$$







https://buklibry.com/download/solutions-manual-of-accompany-multivariable-calculus-linear-algebra-and-differential-equations-by-gerber-grossman-3rd-edition/

142 VECTOR SPACES AND LINEAR TRANSFORMATIONS

9.
$$\binom{-3}{4}$$
, $\binom{7}{-1}$, $\binom{1}{3}$, $\binom{1}{8}$ $\stackrel{R_1}{\triangleright}$ $\stackrel{R_2}{\stackrel{R_2}{\stackrel{(1)}{\sim}}}$ $\stackrel{R_1}{\stackrel{(1)}{\sim}}$ $\stackrel{R_2}{\stackrel{(1)}{\sim}}$ $\stackrel{R_2}{\stackrel{(2)}{\sim}}$ $\stackrel{R_2}{\stackrel{(3)}{\sim}}$ $\stackrel{R_2}{\stackrel{(3)}{\sim}}$ $\stackrel{R_3}{\stackrel{(3)}{\sim}}$ $\stackrel{R_3}{\stackrel{(3)}{\sim}$

$$11. \begin{pmatrix} 1 \\ -2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 2 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ 3 \\ -1 \end{pmatrix} \quad \partial \triangleright \begin{array}{l} R_1 \\ R_2 \\ R_3 \\ R_4 \end{pmatrix} \begin{pmatrix} 1 & -2 & 1 & 1 \\ 3 & 0 & 2 & -2 \\ 0 & 4 & -1 & 1 \\ 5 & 0 & 3 & -1 \end{pmatrix} R_2 - 3R_1 \\ R_3 \\ R_4 - 5R_1 \begin{pmatrix} 1 & -2 & 1 & 1 \\ 0 & 6 & -1 & -5 \\ 0 & 4 & -1 & 1 \\ 0 & 10 & -2 & -6 \end{pmatrix} \text{ ind (s)}$$

15.
$$P_2: 1-x, 1+x, x^2$$

$$R_1 \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ R_3 \end{pmatrix}$$

$$R_2 - R_1 \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ independent (s)}$$

17. P_3 : 2x, $x^3 - 3$, $1 + x - 4x^3$, $x^3 + 18x - 9$ No x^2 term. 4 vectors in $P_3 = \mathbb{R}^3$ that don't span aren't independent.

19.
$$M_{22}$$
: $\begin{pmatrix} 1 & -1 \\ 0 & 6 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 3 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\partial \triangleright \begin{pmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \end{pmatrix}$, $\begin{pmatrix} 1 & -1 & 0 & 6 \\ -1 & 0 & 3 & 1 \\ 1 & 1 & -1 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$, $R_2 + R_1 \\ R_3 - R_1 \\ R_4 \end{pmatrix}$, $R_4 + R_1 = \begin{pmatrix} 1 & -1 & 0 & 6 \\ 0 & -1 & 3 & 7 \\ 0 & 2 & -1 & -4 \\ 0 & 1 & 1 & 0 \end{pmatrix}$ ind

21. C[0,1]: $\sin x$, $\cos x$ linearly dependent $\Leftrightarrow \sin x \equiv a \cos x \Leftrightarrow \tan x \equiv a$, false. Note: $\sin x$ and $\cos x$ are functionally dependent: $\sin^2 x + \cos^2 x = 1$.

23 and 24. n vectors in \mathbb{R}^n are linearly dependent \Leftrightarrow their determinant is 0.

25. Find
$$\alpha$$
 to make the vectors dependent: $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 3 \\ \alpha \\ 4 \end{pmatrix}$, $0 = \begin{vmatrix} 1 & 2 & 3 \\ 2 & -1 & \alpha \\ 3 & 4 & 4 \end{vmatrix} = 3 \cdot 11 - \alpha(-2) + 4(-5)$, $\alpha = -\frac{13}{2}$

27. $Ac = (a_1, \dots, a_n)(c_1, \dots, c_n)^T = c_1 a_1 + \dots + c_n a_n$, a linear combination of the columns. Theorem 3 is just the definition of linear independence.

29. This is the contrapositive of Problem 28 and hence logically equivalent.

31. If v_1 is orthogonal to v_2 and v_3 , $v_2 \perp v_3$, and all 3 are nonzero, show that $\{v_1, v_2, v_3\}$ is linearly independent. $\triangleright \quad 0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 \stackrel{\sim}{\Rightarrow} 0 = \stackrel{\sim}{\mathbf{0}} \cdot \mathbf{v}_1 = c_1 \mathbf{v}_1 \cdot \mathbf{v}_1 + c_2 \mathbf{v}_2 \cdot \mathbf{v}_1 + c_3 \mathbf{v}_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 \mathbf{v}_2 \cdot \mathbf{v}_1 + c_3 \mathbf{v}_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 \mathbf{v}_2 \cdot \mathbf{v}_1 + c_3 \mathbf{v}_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 \mathbf{v}_2 \cdot \mathbf{v}_1 + c_3 \mathbf{v}_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_1 + c_3 v_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_1 + c_3 v_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_1 + c_3 v_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_1 + c_3 v_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_1 + c_3 v_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_1 + c_3 v_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_1 + c_3 v_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_1 + c_3 v_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_1 + c_3 v_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_1 + c_3 v_3 \cdot \mathbf{v}_1 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_1 + c_3 v_3 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \cdot \mathbf{v}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \stackrel{\sim}{\mathbf{v}}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \stackrel{\sim}{\mathbf{v}}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \stackrel{\sim}{\mathbf{v}}_2 = c_1 v_1 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v_2 \stackrel{\sim}{\mathbf{v}}_1 + c_2 v$

 $\{\mathbf{v}_2 \cdot \mathbf{v}_1 = \mathbf{v}_3 \cdot \mathbf{v}_1 = 0\} \Rightarrow c_1 = 0 \ \{v_1 \neq 0\}. \text{ Similarly, } c_2 = c_3 = 0.$

In Problems 33-37, write the solution space as the span of an independent set of vectors.

33.
$$x_1 + x_2 + x_3 = 0 \Rightarrow x_1 = -x_2 - x_3 \Rightarrow \mathbf{x} = (-x_2 - x_3, x_2, x_3) = x_2(-1, 1, 0) + x_3(-1, 0, 1)$$

37. $x_1 + 2x_2 - 3x_3 + 5x_4 = 0 \Rightarrow x = x_2(-2, 1, 0, 0) + x_3(3, 0, 1, 0) + x_4(-5, 0, 0, 1)$

38 and 39. (a) Show that \mathbf{u}^{\perp} is a subspace. (b) Find 2 linearly independent vector \mathbf{x} and \mathbf{y} in $(1,2,3)^{\perp}$.

▶ (a) $\mathbf{v} \cdot \mathbf{u} = 0$ and $\mathbf{w} \cdot \mathbf{u} = 0 \Rightarrow (a\mathbf{v} + b\mathbf{w}) \cdot \mathbf{u} = a\mathbf{v} \cdot \mathbf{u} + b\mathbf{w} \cdot \mathbf{u} = a\mathbf{0} + b\mathbf{0} = \mathbf{0}$ (b) $\mathbf{x} = (-2, 1, 0), \mathbf{y} = (-3, 0, 1)$ (c) $w = x \times y = (1, 2, 3) = u$ (d) u^{\perp} is the plane $\perp u$, and the cross product is the vector \perp to the plane.

41. Two polynomials cannot span P₂. See Problem 8.3.14.

43. Show that any subset of a set of linearly independent vectors is independent. (Pr 29 applies to finite sets.)

Any combination of the vectors of a subset is a combination of the vectors of the set.

44 and 45. mn+1 matrices in M_{mn} is the same as mn+1 vectors in \mathbb{R}^{mn} and hence dependent.

47. Show that in P_n 1, $x, ..., x_n$ are linearly independent. $c_0 + c_1 x + \cdots + c_n x^n \equiv 0 \iff \text{all the } c_i = 0$

49. By hypothesis, $c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n = \mathbf{0}$ with some c_i different from 0. Let k be the largest subscript for which $c_k \neq 0 \text{ so } c_1 \mathbf{v}_1 + \dots + c_{k-1} \mathbf{v}_{k-1} + c_k \mathbf{v}_k = 0 \text{ and } \mathbf{v}_k = (-c_1/c_k) \mathbf{v}_1 + \dots + (-c_{k-1}/c_k) \mathbf{v}_{k-1}.$

51 and 52. Prove the results on the Wronskian and extend them to n functions.

f(x), g(x) dependent \Rightarrow $af(x) + bg(x) \equiv 0$, a, b not both $0 \Rightarrow af'(x) + bg'(x) \equiv 0$. For each x, as a system of equations in a, b there are nontrivial solutions so the determinant W of the coefficient matrix must be zero. Conversely, suppose g is never 0. Then $(f/g)' = -W(f,g)/g^2 = 0 \Rightarrow f/g = c$. $W(f_1,...,f_n) = \det(f_j^{(i-1)}(x))$. $\sum_{i=1}^{n} a_i f_i(x) \equiv 0 \Rightarrow \sum_{i=1}^{n} a_i f_i(x) \equiv 0, \ j = 1, ..., n-1.$ Since there are nontrivial solutions, W must be zero. The condition for the converse is that the Wronskian of some set of n-1 functions, say f_1, \ldots, f_n , is never 0. Then

8.4 LINEAR INDEPENDENCE 143

 $\cdots f_{n-1}^{n-1} y'$ = 0 is a homogeneous linear differential equation of order n-1 with n solutions $f_1^{(n-1)} \quad \cdots \quad f_{n-1}^{(n-1)} y^{(n-1)}$ $(f_1, ..., f_{n-1})$ by equal columns, f_n by hypothesis). Hence the f_i are dependent by the extension of Th. 10.7.4.

53. If u, v, w are linearly independent, what about u + v, u + w, v + w? $\begin{vmatrix} 1 & 0 & 1 \end{vmatrix} = -2 \neq 0$ independent.

55. When are $(1, a, a^2)$, $(1, b, b^2)$, $(1, c, c^2)$ independent?

$$\begin{vmatrix}
1 & a & a^2 \\
1 & b & b^2 \\
1 & c & c^2
\end{vmatrix} = (b-a)(c-a)(c-b) \text{ (Vandermonde)} \neq 0 \text{ if } a, b, c \text{ are distinct.}$$

57. Extend
$$\begin{pmatrix} 2\\1\\2 \end{pmatrix}$$
, $\begin{pmatrix} -1\\3\\4 \end{pmatrix}$ to 3 independent vectors. $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k}\\2 & 1 & 2\\-1 & 3 & 4 \end{vmatrix} = \begin{pmatrix} -2\\-10\\7 \end{pmatrix}$ is orthogonal to both \Rightarrow independent

59. Let u, v, w lie in the plane ax + by + cz = d, a, b, c not all 0. Since each vector lies on O, d = 0. Then $a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3 = 0$, $av_1 + bv_2 + cv_3 = 0$, $aw_1 + bw_2 + cw_3 = 0$ has nontrivial solutions for a, b, c so u_1 v_1 w_1 $u_1 \ u_2 \ u_3$ v_1 v_2 v_3 $= | u_2$ v_2 w_2 | = 0 and so u, v, w are linearly dependent. $w_1 \ w_2 \ w_3 \ | \ u_3 \ v_3 \ w_3 \ |$

8.5 BASIS AND DIMENSION

Basis $S = \{v_1, ..., v_n\}$ for vector space V if S is linearly independent and S spans V. In \mathbb{R}^n a set of n vectors that satisfies either condition satisfies both.

S is a basis for V if each vector in V is a unique linear combination of the vectors of S.

V has Dimension n dim V = n: If V has a basis of n vectors, any basis of V has n vectors. dim $\{0\} = 0$. Symmetric, Skew $n \times n$ symmetric matrices have dim $\frac{1}{2}(n^2+1)$; skew-symmetric, dim $\frac{1}{2}(n^2-n)$ See Pr. 26 Infinite Dimensional P has the basis 1, x, x^2 , x^3 , ..., but a basis for C[0,1] requires Zorn's lemma (App 6).

Problems 8.5

In Problems 1-10, determine if the set is a basis for the space H.

▶ If the number of vectors is correct then we need only show independence or span.

1. P_2 : $1-x^2$, x

 \triangleright dim $P_2 = 3$; not a basis

3. P_2 : x^2-1 , x^2-2 , x^2-3

▶ can't span without x term

5. P₂: 3, $x^3 - 4x + 6$, x^2

 \triangleright dim P₃ = 4; not a basis

7.
$$M_{22}$$
: $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$

 \triangleright basis. Independent since $abcd \neq 0$.

9. $H = \{(x,y): x+y=0\}: (1,-1)$

basis. 1 nonzero vector is independent

In Problems 11–14, find a basis in \mathbb{R}^3 for the subspace.

 \triangleright (1,2,0), (1,0,2) 11. The plane 2x - y - z = 0

13. The line x/2 = y/3 = z/4

 \triangleright (2, 3, 4)

15. Find the proper subspaces of \mathbb{R}^3 .

▶ The dimension can be 1 (line on O) or 2 (plane on O).

192 ORDINARY DIFFERENTIAL EQUATIONS

(b)
$$y''' - 2y' - 4y = e^{-x} \tan x$$
. $\lambda^3 - 2\lambda - 4 = (\lambda - 2)(\lambda^2 + 2\lambda + 2) = (\lambda - 2)[(\lambda + 1)^2 + 1]$. $y_1 = e^{2x}$, $y_2 = e^{-x} \cos x$, $y_3 = e^{-x} \sin x$. The equations are $e^{2x}c_1' + e^{-x}(\cos x)c_2' + e^{-x}(\sin x)c_3' = 0$ $2e^{2x}c_1' - e^{-x}(\cos x + \sin x)c_2' + e^{-x}(-\sin x + \cos x)c_3' = 0$ $4e^{2x}c_1' + 2e^{-x}(\sin x)c_2' - 2e^{-x}(\cos x)c_3 = e^{-x} \tan x$. The determinant is $W = Ce^{-\int a \, dx}$ {Problem 22} $= Ce^{\int 0 \, dx} = C$. Let $x = 0$ to find $W = \begin{bmatrix} 1 & 1 & 0 \\ 2 & -1 & 1 \\ 4 & 0 & -2 \end{bmatrix} = 10$

$$10c_1' = e^{-x} \tan x \begin{vmatrix} e^{-x} \cos x & e^{-x} \sin x \\ -e^{-x} (\cos x + \sin x) & e^{-x} (-\sin x + \cos x) \end{vmatrix} = e^{-3x} \tan x \begin{vmatrix} \cos x & \sin x \\ -\cos x - \sin x & -\sin x + \cos x \end{vmatrix}$$
$$= e^{-3x} \tan x. c_1 = \frac{1}{10} \left[e^{-3x} \tan x \, dx, \text{ nonelementary.} \right]$$

$$\begin{vmatrix}
10c_2' = -e^{-x} \tan x & e^{2x} & e^{-x} \sin x \\
2e^{2x} & e^{-x} (-\sin x + \cos x) & = -\tan x & 1 & \sin x \\
= -\tan x(-3\sin x + \cos x) = 3(1 - \cos^2 x)/\cos x - \sin x = 3\sec x - \cos x - \sin x.$$

$$c_2 = \frac{1}{10} [3 \ln|\sec x + \tan x| - \sin x + \cos x].$$

$$\begin{aligned} &10c_3{'}=e^{-x} \left| \begin{array}{cc} e^{2x} & e^{-x}\cos x \\ &2e^{2x} & -e^{-x}(\cos x + \sin x) \end{array} \right| = -\tan x \left| \begin{array}{cc} 1 & \cos x \\ 2 & -\sin x + \cos x \end{array} \right| \\ &= -\sec x + \cos x - 3\sin x. \ c_3 = \frac{1}{10}[-\ln|\sec x + \tan x| + \sin x + 3\cos x]. \ y_p = \\ &\frac{1}{10}e^{2x} \int e^{-3x}\tan x \, dx + \frac{1}{10}e^{-x}\cos x[3\ln|\sec x + \tan x| - \sin x + \cos x] + \frac{1}{10}e^{-x}\sin x[-\ln|\sec x + \tan x| + \sin x + 3\cos x] \end{aligned}$$

$$= \frac{1}{10}e^{2x} \int e^{-3x} \tan x \, dx + \frac{1}{10}e^{-x} [(3\cos x - \sin x) \ln|\sec x + \tan x| + 2\sin x \cos x + 1].$$

In Problems 31-33, solve the Euler equation.

31. Let
$$x = e^t$$
. $x^3y''' + 2x^2y'' + y = [D(D-1)(D-2) + 2D(D-1) - D+1]y = (D^3 - D^2 - D+1)y = 0$. $\lambda^3 - \lambda^2 - \lambda + 1 = (\lambda + 1)(\lambda - 1)^2 = 0$, $\lambda = -1, 1, 1$. $y = ae^{-t} + (b + ct)e^t = ax^{-1} + (b + c \ln x)x$

33.
$$x^3y''' + 4x^2y'' + 3xy' + y = [D(D-1)(D-2) + 4D(D-1) + 3D + 1]y = (D^3 + D^2 + D + 1)y = 0$$
.
 $\lambda^3 + \lambda^2 + \lambda + 1 = (\lambda + 1)(\lambda^2 + 1)$. $y = ae^{-t} + b \cos t + c \sin t = ax^{-1} + b \cos \ln|x| + c \sin \ln|x|$

10.17 NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS: EULER'S METHODS

Euler's Method for dy/dx = f(x, y), $y(x_0) = y_0$, step size $h: x_{n+1} = x_n + h$, $y_{n+1} = y_n + h f(x_n, y_n)$. Error = O(h). Improved Euler $k_1 = f(x_n, y_n), k_2 = f(x+h, k_1). x_{n+1} = x_n + h, y_{n+1} = y_n + \frac{1}{2}h(k_1 + k_2).$ Error = $O(h^2)$. Runge-Kutta $k_1 = f(x_n, y_n), k_2 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_1), k_3 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_2), k_4 = f(x_n + h, y_n + hk_3)$ $x_{n+1} = x_n + h$, $y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$. Error = $O(h^4)$.

Problems 10.17

 y_{RK}

In Problems 1-10, use the Euler y_E , and improved Euler y_{IE} method.

- ▶ y_{RK} is Runge-Kutta, y is exact. We give as many decimals as needed to distinguish among the solutions.
- 1. y' = x + y, y(0) = 1, end = 1, h = .2. y' y = x, $(y' y)'e^{-x} = xe^{-x}$, $ye^{-x} = -xe^{-x} e^{-x} + C$. $y(0) = 0 \Rightarrow 0$ 1 = -1 + C, C = 2. $y = 2e^x - x - 1$. 0 .21.241.5772.0311.24281.583642.044212.65104

$$y' = \frac{x - y}{x + y}, \ y(2) = 1, \ \text{end} = 1, \ h = -.2. \ y'(x + y) = x - y, \ yy' + (xy' + y) = x, \ \frac{1}{2}y^2 + xy = \frac{1}{2}x^2 + C, \ y(2) = 1 \Rightarrow \frac{1}{2} = C. \ y = \sqrt{2x^2 + 1} - x.$$

$$x \qquad 2 \qquad 1.8 \qquad 1.6 \qquad 1.4 \qquad 1.2 \qquad 1.0$$

$$y_E \qquad 1 \qquad 0.933 \qquad 0.870 \qquad 0.811 \qquad 0.757 \qquad 0.712$$

\boldsymbol{x}	2	1.8	1.6	1.4	1.2	1.0
y_{E}	1	0.933	0.870	0.811	0.757	0.712
y_{IE}	1	0.9349594	0.8738649	0.8181110	0.7697801	0.7320708
y_{RK}	1	0.9349589	0.8738633	0.8181073	0.7697715	0.7320505
y	1	0.9349589	0.8738634	0.8181071	0.7697716	0.7320508

10.17 NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS: EULER'S METHODS 193

5.
$$y' = x\sqrt{1+y^2}$$
, $y(1) = 0$, end = 3, $h = .4$. $\frac{dy}{\sqrt{1+y^2}} = x \ dx$, $\sinh^{-1} y = \frac{1}{2}x^2 + C$. $y(1) = 0 \Rightarrow 0 = \frac{1}{2} + C$. $y = \sinh(\frac{1}{2}x^2 - \frac{1}{2})$. $x = 1 \quad 1.4 \quad 1.8 \quad 2.2 \quad 2.6 \quad 3.0$ $y_E = 0 \quad 0.4 \quad 1.00 \quad 2.02 \quad 4.01 \quad 8.3$ $y_{IE} = 0 \quad 0.502 \quad 1.358 \quad 3.178 \quad 7.864 \quad 21.67$ $y_{RK} = 0 \quad 0.49867 \quad 1.36925 \quad 3.3342 \quad 8.8456 \quad 27.027$ $y = 0 \quad 0.49865 \quad 1.36929 \quad 3.3372 \quad 8.8791 \quad 27.290$

7.
$$y' = \frac{y}{x} - 2.5x^2y^3$$
, $y(1) = \frac{1}{\sqrt{2}} \approx 0.7071$, end = 2, $h = .125$. Bernoulli: $y^{-3}y' = y^{-2}x^{-1} - 2.5x^2$, $z = y^{-2}$, $-\frac{1}{2}z' = zx^{-1} - 2.5x^2$, $z' + 2x^{-1}z = 5x^2$, IF = x^2 . $(z' + 2x^{-1}z)x^2 = 5x^4$, $zx^2 = x^5 + C$, $z(1) = 2 \Rightarrow 2 = 1 + C$, $\frac{x^2}{y^2} = x^5 + 1$, $y = \frac{x}{\sqrt{x^5 + 1}}$.

\boldsymbol{x}	1	1.125	1.250	1.375	1.500	1.625	1.750	1.875	2.000
${y}_{E}$	0.707	0.685	0.634	0.573	0.514	0.461	0.416	0.377	0.343
y_{IE}	0.7071	0.6705	0.6196	0.5648	0.5120	0.4636	0.4205	0.3826	0.3494
y_{RK}	0.70711	0.67205	0.62097	0.56535	0.51168	0.46276	0.41938	0.38136	0.34816
y	0.70711	0.67207	0.62100	0.56537	0.51168	0.46276	0.41937	0.38135	0.34816

9. $y' = ye$	x, y(0) =	= 2, end $= 2$	h = .2.	$dy/y = e^x$	dx , $\ln y =$	$=e^x+C.$	y(0) = 2	⇒ ln 2 =	1 + C. y	$= 2 \exp(e^{i\theta})$	$^{x}-1).$
\boldsymbol{x}	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
y_E	2	2.4	2.99	3.88	5.29	7.6	11.8	19	36	71	156
y_{IE}	2	2.493	3.260	4.518	6.713	10.84	19.35	38.83	89.41	241.4	781.6
y_{RK}	2	2.4956	3.2705	4.5504	6.8113	11.147	20.339	42.378	103.8	308.9	1165
y	2	2.4956	3.2706	4.5506	6.8120	11.150	20.354	42.451	104.2	311.9	1191

In Problems 11-20, use the improved Euler method to graph the solution.

▶ As some indication of accuracy, y* is a Runge-Kutta with half the given step.

11. $y' = xy^2$	$^{2}+y^{3}, y(0)$	= 1, end $= .1 h$:	= 0.02			
\boldsymbol{x}	0	0.02	0.04	0.06	0.08	0.10
y_{IE}	1	1.02082	1.043 43	1.06806	1.09497	1.12449
y_{RK}	1	1.020 831	$1.043\ 455$	1.068 099	1.095032	1.124576
ν π. 11*	1	1.020 831	1.043 455	1.068 099	1.095032	1.124576

13.
$$y' = x + \cos(\pi y)$$
, $y(0) = 0$, end = 2, $h = .4$
 $x = 0$ 0.4 0.8 1.2 1.6 2.0
 $y_{IE} = 0$ 0.34 0.56 0.76 0.9771 1.342
 $y_{RK} = 0$ 0.3821 0.6104 0.7811 0.9777 1.3527
 $y_* = 0$ 0.3828 0.6128 0.7821 0.9785 1.3542

\boldsymbol{x}	0	0.7854	1.5708	2.3562	3.1416	3.9270	4.7124	5.4978	6.28
y_{IE}	1	1.28	1.65	1.46	1.09	0.87	0.79	0.93	0.9
y_{RK}	1	1.328	1.913	1.610	1.164	0.915	0.794	0.542	0.7'
u*	1	1.330	1.920	1.618	1.162	0.872	0.704	0.594	0.5

17.
$$y' = \sqrt{y^2 - x^2}$$
, $y(0) = 1$, end = 1, $h = 0.1$
 $x = 0$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 $y_{IE} = 1$ 1.1048 1.2197 1.3452 1.4118 1.6304 1.7921 1.9681 2.1599 2.3694 2.5983
 $y_{RK} = 1$ 1.10501 1.22019 1.34592 1.48285 1.63182 1.79391 1.97040 2.16282 2.37291 2.60265
 $y_* = 1$ 1.10501 1.22019 1.34592 1.48285 1.63182 1.79391 1.97040 2.16282 2.37291 2.60265

19.
$$y' = \sqrt{x + y^2}$$
, $y(1) = 2$, end = 0, $h = -0.2$.

 $x = 1$
0.8
0.6
0.4
0.2
0
 y_{IE}
2
1.597
1.269
1.004
0.797
0.644
 y_{RK}
2
1.594 737
1.264 495
0.998 607
0.789 908
0.635 357
 $y*$
2
1.594 734
1.264 491
0.998 600
0.789 899
0.635 337

https://buklibry.com/download/solutions-manual-of-accompany-multivariable-calculus-linear-algebra-and-differential-equations-by-gerber-grossman-3rd-edition/ **12 REVIEW 233**

232 TAYLOR POLYNOMIALS, SEQUENCES, AND SERIES

7.
$$f(x) = x^3 - x^2 + 2x + 3$$
; $a = 0$; $n = 8$

$$P_8(x) = 3 + 2x - x^2 + x^3 = f(x)$$

In Problems 9–13, find a bound for
$$|R_n(x)|$$
. $\Rightarrow R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$

In Problems 9–13, find a bound for
$$|R_n(x)|$$
. $\Rightarrow R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$
9. $f(x) = \cos x$; $a = \frac{1}{6}\pi$; $n = 5$; $x \in [0, \frac{1}{2}\pi]$ $\Rightarrow f^{(6)}(x) = -\cos x$
In $[0, \frac{1}{6}\pi]$, $|R_5| = \left|\frac{-\cos c}{720}(x - \frac{1}{6}\pi)\right| < \frac{1}{720}(\frac{1}{6}\pi)^6 \approx 0.00003$. In $[\frac{1}{6}\pi, \frac{1}{2}\pi]$, $|R_5| < \frac{\frac{1}{2}\sqrt{3}}{720}(\frac{1}{3}\pi)^6 \approx 0.00159$. Thus $|R_5| < 0.00159$ in $[0, \frac{1}{2}\pi]$.

11.
$$f(x) = e^x$$
; $a = 0$; $n = 6$; $x \in [-\ln e, \ln e]$

In Problems 13 and 14, use a Taylor polynomial of degree 4 to approximate the integral and find its error.

13.
$$\int_0^{1/2} \cos x^2 dx = \int_0^{1/2} (1 - \frac{x^4}{2}) dx = \left[x - \frac{x^5}{2 \cdot 5}\right]_0^{1/2} = .5 - \frac{.5^5}{2 \cdot 5} = 0.496875 \text{ with error } < \frac{.5^9}{4! \cdot 9} = 9.04 \times 10^{-6}$$

15. Find the first 5 terms of the sequence
$$\left\{\frac{n-2}{n}\right\}$$
. $\Rightarrow \frac{1-2}{1} = -1, \frac{2-2}{2} = 0, \frac{3-2}{3} = \frac{1}{3}, \frac{4-2}{4} = \frac{1}{2}, \frac{5-2}{5} = \frac{3}{5}$

In Problems 17-18, find the general term a_n of the sequence.

17.
$$\frac{1}{8} = \frac{2 \cdot 1 - 1}{2^3}$$
 $\frac{3}{16} = \frac{2 \cdot 2 - 1}{2^4}$ $\frac{5}{32} = \frac{2 \cdot 3 - 1}{2^5}$ $\frac{7}{64} = \frac{2 \cdot 4 - 1}{2^6}$ $\frac{2n - 1}{2^{n+2}}$

In Problems 18-24, determine whether the sequence is convergent or divergent. If it is convergent, find its limit.

19.
$$\left\{\frac{-7}{n}\right\}$$
 \triangleright Converges to $\lim_{n \to \infty} \frac{-7}{n} = 0$.

21.
$$\left\{\frac{\ln n}{\sqrt{n}}\right\} \qquad \qquad \triangleright \text{ Converges to } \lim_{n \to \infty} \frac{\ln n}{n^{1/2}} = \lim_{x \to \infty} \frac{\ln x}{x^{1/2}} \left\{\frac{\infty}{\infty}\right\} = \lim_{x \to \infty} \frac{1/x}{1/x^{-1/2}} = \lim_{x \to \infty} \frac{2}{x^{1/2}} = 0.$$

23.
$$\left\{\left(1-\frac{2}{n}\right)^n\right\}$$
 \triangleright Converges to e^{-2} since $\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x$ for any x .

In Problems 25-32, determine if the sequence is bounded or unbounded; increasing, decreasing, or not monotonic.

25.
$$\sqrt{n} \cos n$$
 \triangleright unbounded, not monotonic

27.
$$2^n/(1+2^n)$$
 $\Rightarrow = 1/(1+2^{-n})$. bounded, S\(\tau\) to 1

29.
$$(\sqrt{n}+1)/n$$
 $\Rightarrow = 1/\sqrt{n}+1/n$. bounded, S\ to 0

31.
$$(n-7)/(n+4)$$
 $\Rightarrow = 1-11/(n+4)$. bounded, S\(\gamma\) to 1

In Problems 33-36, evaluate the sum.

33.
$$\sum_{k=2}^{10} 4^k$$
 $\Rightarrow = \frac{4^2 - 4^{11}}{1 - 4} = 1,398,096$, a geometric progression

35.
$$\sum_{k=3}^{\infty} \left[\left(\frac{3}{4} \right)^k - \left(\frac{2}{5} \right)^k \right] \qquad \Rightarrow = \frac{\left(\frac{3}{4} \right)^3}{1 - \frac{3}{4}} - \frac{\left(\frac{2}{5} \right)^3}{1 - \frac{2}{5}} = \frac{27}{16} - \frac{8}{75} = \frac{1897}{1200}, \text{ the difference of two geometric series}$$

37. Write as a rational number
$$0.797979...$$
 $\Rightarrow = .79 + .0079 + .000079 + ... = \frac{.79}{1 - .01} = \frac{.79}{.99} = \frac{.79}{99}$, geometric

In Problems 39-50, determine if the series converges or diverges.

39.
$$a_k = 1/(k^3 - 5)$$
 $\Rightarrow k^3 a_k = 1/(1 - 5/k^3) \to 1$. CC $\sum 1/k^3$

41.
$$a_k = 1/(k^3 + 4)^{1/2}$$
 $\Rightarrow k^{3/2} a_k = 1/(1 + 4/k^3)^{1/2} \to 1$. CC $\sum 1/k^{3/2}$

43.
$$a_k = 1/(k^3 + 50)^{1/3}$$
 $\Rightarrow ka_k = 1/(1 + 50/k^3)^{1/3} \to 1$. DC $\sum 1/k$

45.
$$a_k = 10^k/k^5$$
 DN2

47.
$$a_k = \frac{\sqrt{k} \ln(k+3)}{k^2+2}$$
 $\Rightarrow k^{1.4} a_k = \frac{k^{1.9} \ln(k+3)}{k^2+2} = \frac{\ln(k+3)}{k^{1.4} + 2k^{-1.9}} = 0. \text{ CC } \sum 1/k^{1.4}$

49.
$$a_k = e^{1/k}/k^{3/2}$$
 $\Rightarrow k^{3/2}a_k = e^{1/k} \rightarrow 1$. CC $\sum 1/k^{3/2}$

In Problems 51-62, determine if the alternating series converges absolutely, conditionally, or not at all.

51.
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{50k} \Rightarrow \text{CAZ. } \sum_{|a_k|} \text{DC } \sum_{k=1}^{\infty} \frac{1}{k} \text{ conditional}$$

53.
$$\sum_{k=2}^{k-1} \frac{(-1)^{k+1}}{\sqrt{k(k-1)}}$$
 \triangleright CAZ. $\sum |a_k|$ DC $\sum 1/k$. conditional

55.
$$\sum_{k=1}^{\infty} \frac{(-1)^k k^2}{k^4 + 1}$$
 $\Rightarrow k^2 |a_k| = \frac{k^4}{k^4 + 1} = \frac{1}{1 + (1/k^4)} \to 1$. CC $\sum 1/k^4$. absolute

57.
$$\sum_{k=3}^{\infty} \frac{(-1)^k (k+2)(k+3)}{(k+1)^3} \quad \triangleright \quad \text{CAZ:} \quad \frac{(k+2)(k+3)}{(k+1)^3} = \frac{(1+2/k)(1+3/k)}{k(1+1/k)^3} \rightarrow 0. \quad |a_k| \text{ DC } \sum 1/k. \text{ conditional}$$

59.
$$\sum_{k=1}^{\infty} \frac{(-1)^k k^k}{k!}$$
 > DNZ. In fact $\frac{k^k}{k!} = \frac{k}{1} \cdot \frac{k \cdot k \cdot \dots \cdot k}{2 \cdot 3 \cdot \dots \cdot k} > k$.

61.
$$\sum_{k=1}^{\infty} (-1)^k \left(1 + \frac{1}{k}\right)^k \qquad \qquad \text{DNZ. In fact } \lim_{k \to \infty} \left(1 + \frac{1}{k}\right)^k = e$$

63. With
$$\epsilon < 0.001$$
 sum $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^3}$ $\Rightarrow \approx 1 - \frac{1}{2^3} + \frac{1}{3^3} - \frac{1}{4^3} + \frac{1}{5^3} - \frac{1}{6^3} + \frac{1}{7^3} - \frac{1}{8^3} + \frac{1}{9^3} = 0.9021$ with $\epsilon < \frac{1}{10^3} = 0.001$ $\approx 1 - \frac{1}{2^3} + \frac{1}{3^3} - \frac{1}{4^3} + \frac{1}{5^3} - \frac{1}{2} \cdot \frac{1}{6^3} = 0.90210$, $\epsilon < \frac{1}{2}(\frac{1}{6^3} - \frac{1}{7^3}) = 8.6 \times 10^{-4}$

65. At what time between 9 P.M. and 10 P.M. is the minute hand of a clock exactly over the hour hand?

While the minute hand travels the 45 min. between 12 and 9, the hour hand advances 45/12 min. While the minute hand travels 45/12 min., the hour hand advances 45/12 min., etc. The two coincide at $45/(1-\frac{1}{12}) = \frac{540}{11}$ min. = $39\frac{1}{11}$ min. after 9.

In Problems 67-76, find the radius and interval of convergence of the power series.
$$\triangleright$$
 R = $\lim_{k\to\infty} \left| \frac{a_k}{a_{k+1}} \right|$ 67. $\sum_{k=0}^{\infty} \frac{x^k}{3^k}$ \triangleright R = $\lim_{k\to\infty} \frac{1/3^k}{1/3^{k+1}} = \lim_{k\to\infty} 3 = 3$. $|x| = 3$: DNZ. $(-3,3)$

69.
$$\sum_{k=0}^{\infty} \frac{x^k}{k^2 + 2}$$
 \Rightarrow $R = \lim_{k \to \infty} \frac{(k+1)^2 + 2}{k^2 + 2} = \lim_{k \to \infty} \frac{(1+1/k)^2 + 2/k^2}{1 + 2/k^2} = 1. |x| = 1: CC \sum 1/k^2. [-1, 1]$

71.
$$\sum_{k=2}^{\infty} \frac{x^k}{(2 \ln k)^k}$$
 $\Rightarrow R = \lim_{n \to \infty} 1/a_n^{-1/n} = \lim_{n \to \infty} (2 \ln n) = \infty$

73.
$$\sum_{k=0}^{\infty} \frac{(3x-5)^k}{3^k}$$
 $\Rightarrow = \sum_{k=0}^{\infty} (x-\frac{5}{3})^k$. $R = 1$. $\left|x-\frac{5}{3}\right| = 1$: DNZ. $(\frac{2}{3}, \frac{8}{3})$

75.
$$\sum_{k=0}^{\infty} (-1)^k x^{3k}$$
 \Rightarrow R³ = 1, R = 1. |x| = 1: DNZ. (-1,1)

In Problems 77-80, estimate the integral with specified error ϵ .

▶ The series used are CAZ with error less than the first term omitted.

77.
$$\epsilon < 0.00001$$
.
$$\int_{0}^{1/2} e^{-t^2} dt$$

$$\Rightarrow = \int_{0}^{1/2} (1 - t^2 + \frac{t^4}{2} - \frac{t^6}{6}) dt \approx .5 - \frac{.5^3}{3} + \frac{.5^5}{5 \cdot 2} - \frac{.5^7}{7 \cdot 6} = 0.461272$$
with $\epsilon < \frac{.5^9}{9 \cdot 24} = 9.04 \times 10^{-6}$

79.
$$\epsilon < 0.001$$
.
$$\int_0^{1/2} t^3 e^{-t^3} dt$$
 $\Rightarrow = \int_0^{1/2} t^3 \left(1 - t^3 + \frac{t^6}{2} - \cdots\right) dt = \int_0^{1/2} \left(t^3 - t^6 + \frac{t^9}{2} - \right) dt$
$$\approx \frac{1}{4} \left(\frac{1}{2}\right)^4 + \frac{1}{7} \left(\frac{1}{2}\right)^7 = 0.01451 \text{ with } \epsilon < \frac{1}{20} \left(\frac{1}{2}\right)^{10} = 0.00005$$

81. Find the Maclaurin series for
$$x^2 e^x$$
. $\Rightarrow = x^2 \sum_{k=0}^{\infty} \frac{x^k}{k!} = \sum_{k=0}^{\infty} \frac{x^{k+2}}{k!}$

83. Find the Maclaurin series for
$$\cos^2 x$$
. $\Rightarrow = \frac{1}{2}(1+\cos 2x) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}\sum_{k=1}^{\infty} (-1)^k \frac{(2x)^{2k}}{(2k)!} = 1 + \sum_{k=1}^{\infty} (-1)^k \frac{(2x)^{2k}}{2(2k)!}$