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CHAPTER 2 REVIEW EXERCISES

Setting h(0) = 2 we find ¢; = 8/2/5, so that

25 L +&
5 7680 5
ho/?2 =42 — ——
V2 30727
and

1 2/5
= (4v2 — —— .

h (\/_ 3072t)

In this case h(4 hr) = h(14,400 s) = 11.8515 inches and h(5 hr) = k(18,000 s) is not a real number. Using a
CAS to solve h(t) = 0, we see that the tank runs dry at ¢t &~ 17,378 s ~ 4.83 hr. Thus, this particular conical

water clock can only measure time intervals of less than 4.83 hours.

34. If we let r, denote the radius of the hole and A, = =[f(h)]?, then the
differential equation dh/dt = —kv/h, where k = cAy+/2g/Ay, becomes

dh cwr%\/@\/ﬁ_ 8crivh

dt—alfWP T FmP 17
For the time marks to be equally spaced, the rate of change of the height must be

a constant; that is, dh/dt = —a. (The constant is negative because the height is % |
T

decreasing.) Thus -1 1

8crivh 5 8crivh 2¢ 14

—a=-——r_ fh)]? = , and r= f(h) = 2r, ]/ = B/

G = () = 21y =

Solving for h, we have
a2
= —4 7‘4
64c%ry

The shape of the tank with ¢ = 0.6, a =2 ft/12 hr =1 {t/21,600 s, and rj, = 1/32(12) = 1/384 is shown in the

above figure.

35. From dz/dt = kyx(a — x) we obtain

<1/_a+1/_a>dx—k1dt

r  a-=x
so that = acie®1t /(1 + c1e®*1t). From dy/dt = kexy we obtain

k2
In|y| = —ln|1+clea}’“t|+c or y=c(1+c O‘klt)kz/kl.

36. In tank A the salt input is

gal b gal X Ib 1 b

- — 2— 1— 14+ — —_—.
(7 min) < gal) * ( min / \ 100 gal * 100" ) min
1 1 1 1 2 1
gl (z by (ogal) (o by 2 b
min 100 gal min 100 gal 25 " min
In tank B the salt input is
5 gal gal
min 100 gal ! min

p el (o2 by fpeal) (22 b 1 b
min / \ 100 gal mm 100 gal 20 "2 min

97

The salt output is

The salt output is
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53.

54.

CHAPTER 3 REVIEW EXERCISES

(e) For each vy we want to find the smallest value of ¢ for which r(t) = +20. Whether we look for r(t) = —20
or r(t) = 20 is determined by looking at the graphs in part (d). The total times that the bead stays on the
rod is shown in the table below.

Vo 0 10 15 16.1 17
r - 20 - 20 - 20 20 20
t 1. 55007 2.35494 3. 43088 6.11627 | 4.22339

When vg = 16 the bead never leaves the rod.

Unlike the derivation given in Section 3.8 in the text, the weight mg of the mass m does not appear in the net
force since the spring is not stretched by the weight of the mass when it is in the equilibrium position (i.e. there
is no mg — ks term in the net force). The only force acting on the mass when it is in motion is the restoring

force of the spring. By Newton’s second law,

m d2_x = —kx or dz_x + ﬁx
a2 a2 m

=0.

The force of kinetic friction opposing the motion of the mass in /N, where p is the coefficient of sliding friction
and N is the normal component of the weight. Since friction is a force opposite to the direction of motion
and since N is pointed directly downward (it is simply the weight of the mass), Newton’s second law gives, for

motion to the right (2’ > 0) ,

d’z _
m g = —kz — pmg,
and for motion to the left (z' < 0),
m d2_x = —kx +
ez Hmg:
Traditionally, these two equations are written as one expression
2
m CCZZTZ + fesen(x’) + kx =0,

where fr = pmg and

, 1, 2/>0
197
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5.3 Special Functions

Letting t = %am?’/? or ar®/? = %t this differential equation becomes

g % {th”(t) + tw'(t) + <t2 - %) w(t)} =0, t>0.

35. (a) By Problem 34, a solution of Airy’s equation is y = z'/?w(2az®/?), where
w(t) = c1Jy3(t) + cod_1/3(t)
is a solution of Bessel’s equation of order % . Thus, the general solution of Airy’s equation for x > 0 is

2 . 2 2 .
Yy = 2w (gax3/2> = 0111/2J1/3 <§ax3/2> + cle/QJ_1/3 (gax3/2> .

(b) Airy’s equation, y” + a?xy = 0, has the form of (18) in the text with

1

1-2=0 = a=
3

20—2:1:}025
2.2 2 2
b*c* =« zb:§a

2 2.2 1
a—pc :0:}}):5.

Then, by (19) in the text,

2 2
Yy = z!/? |:C1J1/3 (gax3/2> +cod 13 (gax3/2)] .

36. The general solution of the differential equation is
y(x) = ey Jo(ax) + oYy (ax).
In order to satisfy the conditions that lim,_g+ y(x) and lim,_,y+ ¢/(x) are finite we are forced to define ¢ = 0.

Thus, y(z) = ¢1Jp(ax). The second boundary condition, y(2) = 0, implies ¢; = 0 or Jy(2«) = 0. In order to

have a nontrivial solution we require that Jo(2a) = 0. From Table 5.1, the first three positive zeros of Jy are

found to be
2ai; = 2.4048, 2a5 = 5.5201, 2a3 = 8.6537

and so a; = 1.2024, as = 2.7601, a3z = 4.3269. The eigenfunctions corresponding to the eigenvalues \; = aF,
Ay = a3, A3 = a3 are Jy(1.2024x), Jo(2.7601z), and Jo(4.3269x).

37. (a) The differential equation y”" + (A/z)y = 0 has the form of (18) in the text with
1

1-2a=0 = a= B

1

2c0—2=-1 = c=

[\

B =\ = b=2VA
a2 —p?’c? =0 = p=1.
Then, by (19) in the text,
y = 2'?[e; 1 (2VAz) + oY1 (2V Az ).
(b) We first note that y = J;(¢) is a solution of Bessel’s equation, t2y” + ty’ + (t> — 1)y = 0, with v = 1. That

1S,
2T () + tJ () + (12 = 1)J1(t) = 0,
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20.

21.

22.

23.

24.

25.

[}

26.

27.

9.11 Double Integrals in Polar Coordinates

Solving 1 = 2sin 26, we obtain sin20 = 1/2 or § = /12 and 6 = 57 /12.
57/12  (2sin 260 57/12  ,2sin 20
Iy:/ / mQSeCQQTdrdﬁz/ / 3 dr do
x/12  J1 x/12  J1
5m/12 1 2sin 20 5m/12 3 1 1
:/ —rt d9=4/ sin420d9:2<—9——sin49+—sin89>
/12 4 1 w/12 4 4 32

ZQK +£_£> (1_£+W>]:M
16 8 64 16 8 64 16

From the solution to Problem 17, I, = kma*/4. By symmetry, I, = I,. Thus Iy = kra*/2.

axis
57 /12

w/12

The density is p = kr.

T 0 T 0 T
1
//rQ(kr)rdrdezk/ / r4drd9:k/ ——
o Jo o Jo 0o 9
1k/ 65 dp = Lk (Lo°
57 ), 57\ 6
The density is p = k/r.
3 3 3 1 1 3 ‘
)dr:kz( r2) =

0

do
0

Iy

™ 6
o km axis

s 30

1/r 1/r
Ioz// TQErder:k:// r2d€dr:k/ r2(— = = 4k s
1 Jo r 1 Jo 1 r 2 1 3 “polar
axis
2a cos 6 2a cos 6 T
Iy = / / r2krdrdf = k:/ df = 4ka4/ cos* 0 do
0
4 olar
= 4ka* ( 0+ —Sm 20 + %sm4¢9> = 4ka* <3—7T> = 3k72ra G g.x:s
0

3

d9:9/ df = 97
0 0

v2/2 /4 r2sin? 0
dx dy = / / rdrdf
/o /’g \/x2+y '
1 /4 AEEEL
o= ~ / sin? 0.0 o
0 3 Jo

/4 /4 1 1
/ / r2sin?0dr do :/ Zr3sin 0
0 0 0 3

w/4
1 07 l511129
3 4 o

1 /1,y2 ) ) 7'r/2 7T/2 2
/ / ety dxdyz/ / e’ rdrd@—/ —e"
o Jo 2

B m(e—1)
—5/0 (efl)dH—T

/3 \/9—.’1)2

T 3 s
1
Va?+y? dydasz/ / \r|rdrd9:/ —r3
o Jo o 3

-3J0

T—2
24

1

do
0
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10.5 Matrix Exponential

cost+sint) _, sint 4
=1 . e "+ C2 . e .
—2sint cost —sint

19. The eigenvalues are Ay = 1 and Ay = 6. This leads to the system

Bt = bo —|— b1
et = by + 6b,,
which has the solution by = Se' — L5 and by = —Le! + Le®. Then
4,6 1,6t 2.t _ 26t
e+ e e — e
g@ — ge ge + ge
The general solution of the system is then
4.t 1,6t 2.t 6t
X — oAlC — 5€ T5€ §€ — € c1
%et—%e“ %et+ o6t o

U= Gt
~__
9]

-
Q
N
VRS
|
[SUINESTIN
~__
9]
=3
&

2 1
_ t 6t
63(1)6 +C4<_2>6 .

20. The eigenvalues are A\; = 2 and A2 = 3. This leads to the system

62t = bo + 2b1
63t = b() + 3b17
which has the solution by = 3e?* — 2e3* and by = —e?! + €3*. Then

2€2t _ eSt _282t _|_ 263t)

At _ _
e =bol+01A = ( 2t g3t o2t | 9Bt

The general solution of the system is then

X _ eAtC _ 26275 _ e3t _26225 + 2e3t )
e2t _ o3t —e2t 4 9¢Bt Cs
2 -1 —2 2
2t 3t 2t 3t
=c e’ +c e’ +c¢ e +c e
1<1) 1(1> 2<1> 2<2>

2 1 )
= (c1 — ¢2) <1> e+ (—c1 + 2¢3) <1> et

2 1
=3 <1)€2t—|—64(1>63t.
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15.2 Applications of the Laplace Transform

EXERCISES 15.2

Applications of the Laplace Transform

1. The boundary-value problem is

,0%u  0%u

awzw, 0<£L’<L, t>0,
w(0,t) =0, wu(L,t)=0, t>0,
0
u(z,0) = Asin %x, 8—? t=0: 0.
Transforming the partial differential equation gives
d*U (3)2 S aein T
— — (- = ——Asin —uz.
dx? a a? L
Using undetermined coefficients we obtain
As

™
—X.

s s
U(z,s) = ¢ cos - + ¢9 sin 2 + Ry sin —

The transformed boundary conditions, U(0,s) = 0, U(L, s) = 0 give in turn ¢; = 0 and ¢3 = 0. Therefore

As . T
U(CU,S) = msmzx
and
w(z,t) = ALt {m} sin %CE = Acos %Ttsin %x
2. The transformed equation is
d*U 9 . .
— — s°U = —2sinnmx — 4sin 3wz
dz?
and so
U(x,s) h sz 4 co sinh sz + 2 i + 1 in 3
x,8) = c1 cosh sx + cg sinh st + ——— sinwer + ———— sin 37z,
’ ! 2 52 + 72 52 + 972

The transformed boundary conditions, U(0,s) = 0 and U(1,s) =0 give ¢; = 0 and ¢ = 0. Thus

4
SInTx + ———— sin 3rx
s

U(zx,s) = T on

52 4 72

and

u(z,t) —og ! {ﬁ}sinﬂm—&—zlf_l {

S

m } sin 3wx

2 4
= —sinntsinwr + — sin 37wt sin 3wx.
T 3T

3. The solution of
d2
o d°U 277 _
a i sU =0
is in this case

Ulz,s) = cre” @D 4 cyel@/a)s,
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10.

11.

12.

13.

14.

. Diverges. To see this consider the term

g Series and Residues

EXERCISES 19.1
Sequences and Series

. 5i, =5, —bi, 5, bi 2. 2—4,1,24+14,3,2—1
. 0,2,0,2,0 4. 141,20, =2+ 27, —4, —4 — 4i
3i+2
Converges. To see this write the general term as %/n .
i

2\" 14+ n27"
C 5. T thi ite th 1t =) —.
onverges. To see this write the general term as <5> T 3057

(i+2/n)*

Converges. To see this write the general term as

i" and take n to be an odd positive integer.

n
n+1

1
. Diverges. To see this write the general term as +/n (1 + — i").

vn
Converges. The real part of the general term converges to 0 and the imaginary part of the general term converges
to .

8n?+n 9 d Tm(z) 6n2 —4n 3
=——— —2asn— o0, and Im(z,) = ——— — = as n — oo.
An? +1 ’ 4n? 4+1 2

" AN 2\
z) in polar form as z, = (%) cosnb +1 (%) sinnf. Now

n

2\" 2
Re(z,) = (%) cosnf — 0asn—oo and Im(z,) = <§> sinnf — 0 as n — oo

Re(zn)

NG

1
Write z, = [ =
rite z <4+

since \/5/4 < 1.

RRNENEE SENENES SENPUNS SUNNNES SIS SUNNNNE S SUUE SR SRS
1420 242 242 342 342 4+2i n+2 n+142 142 n+1+2
Thus, lim S, = ! ,zlfgi.
n—oo 1+2: 5 b
By partial fractions, v _r and so
k(k+1) k k41
Y A A A A ) ) )
e R LA S iy T s
Thus nh_)rrgc S, = 1.
896
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