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2 Chapter 1 FOUNDATION FOR CALCULUS: FUNCTIONS AND LIMITS

1.1 FUNCTIONS AND CHANGE

In mathematics, a function is used to represent the dependence of one quantity upon another.

Let’s look at an example. In 2015, Boston, Massachusetts, had the highest annual snowfall,

110.6 inches, since recording started in 1872. Table 1.1 shows one 14-day period in which the city

broke another record with a total of 64.4 inches.1

Table 1.1 Daily snowfall in inches for Boston, January 27 to February 9, 2015

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Snowfall 22.1 0.2 0 0.7 1.3 0 16.2 0 0 0.8 0 0.9 7.4 14.8

You may not have thought of something so unpredictable as daily snowfall as being a function,

but it is a function of day, because each day gives rise to one snowfall total. There is no formula

for the daily snowfall (otherwise we would not need a weather bureau), but nevertheless the daily

snowfall in Boston does satisfy the definition of a function: Each day, t, has a unique snowfall, S,

associated with it.

We define a function as follows:

A function is a rule that takes certain numbers as inputs and assigns to each a definite output

number. The set of all input numbers is called the domain of the function and the set of

resulting output numbers is called the range of the function.

The input is called the independent variable and the output is called the dependent variable. In

the snowfall example, the domain is the set of days {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} and the

range is the set of daily snowfalls {0, 0.2, 0.7, 0.8, 0.9, 1.3, 7.4, 14.8, 16.2, 22.1}. We call the function

f and write S = f (t). Notice that a function may have identical outputs for different inputs (Days 8

and 9, for example).

Some quantities, such as a day or date, are discrete, meaning they take only certain isolated

values (days must be integers). Other quantities, such as time, are continuous as they can be any

number. For a continuous variable, domains and ranges are often written using interval notation:

The set of numbers t such that a ≤ t ≤ b is called a closed interval and written [a, b].

The set of numbers t such that a < t < b is called an open interval and written (a, b).

The Rule of Four: Tables, Graphs, Formulas, and Words

Functions can be represented by tables, graphs, formulas, and descriptions in words. For example,

the function giving the daily snowfall in Boston can be represented by the graph in Figure 1.1, as

well as by Table 1.1.

2 4 6 8 10 12 14
0

5

10

15

20

25

day

snowfall (inches)

Figure 1.1: Boston snowfall, starting January 27, 2015

As another example of a function, consider the snowy tree cricket. Surprisingly enough, all such

crickets chirp at essentially the same rate if they are at the same temperature. That means that the

chirp rate is a function of temperature. In other words, if we know the temperature, we can determine

1http://w2.weather.gov/climate/xmacis.php?wfo=box. Accessed June 2015.
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26 Chapter 1 FOUNDATION FOR CALCULUS: FUNCTIONS AND LIMITS

Inverse Functions

On August 26, 2005, the runner Kenenisa Bekele30 of Ethiopia set a world record for the 10,000-

meter race. His times, in seconds, at 2000-meter intervals are recorded in Table 1.14, where t = f (d)

is the number of seconds Bekele took to complete the first d meters of the race. For example, Bekele

ran the first 4000 meters in 629.98 seconds, so f (4000) = 629.98. The function f was useful to

athletes planning to compete with Bekele.

Let us now change our point of view and ask for distances rather than times. If we ask how

far Bekele ran during the first 629.98 seconds of his race, the answer is clearly 4000 meters. Going

backward in this way from numbers of seconds to numbers of meters givesf−1, the inverse function31

of f . We write f
−1(629.98) = 4000. Thus, f−1(t) is the number of meters that Bekele ran during

the first t seconds of his race. See Table 1.15, which contains values of f−1.

The independent variable for f is the dependent variable for f−1, and vice versa. The domains

and ranges of f and f
−1 are also interchanged. The domain of f is all distances d such that 0 ≤ d ≤

10000, which is the range of f−1. The range of f is all times t, such that 0 ≤ t ≤ 1577.53, which is

the domain of f−1.

Table 1.14 Bekele’s running time

d (meters) t = f (d) (seconds)

0 0.00

2000 315.63

4000 629.98

6000 944.66

8000 1264.63

10000 1577.53

Table 1.15 Distance run by Bekele

t (seconds) d = f
−1
(t) (meters)

0.00 0

315.63 2000

629.98 4000

944.66 6000

1264.63 8000

1577.53 10000

Which Functions Have Inverses?

If a function has an inverse, we say it is invertible. Let’s look at a function which is not invertible.

Consider the flight of the Mercury spacecraft Freedom 7, which carried Alan Shepard, Jr. into space

in May 1961. Shepard was the first American to journey into space. After launch, his spacecraft rose

to an altitude of 116 miles, and then came down into the sea. The function f (t) giving the altitude in

miles t minutes after lift-off does not have an inverse. To see why it does not, try to decide on a value

for f−1(100), which should be the time when the altitude of the spacecraft was 100 miles. However,

there are two such times, one when the spacecraft was ascending and one when it was descending.

(See Figure 1.43.)

The reason the altitude function does not have an inverse is that the altitude has the same value

for two different times. The reason the Bekele time function did have an inverse is that each running

time, t, corresponds to a unique distance, d.

t1 t2

100

116

t (min)

d (miles)

f (t)

Figure 1.43: Two times, t1 and t2, at which

altitude of spacecraft is 100 miles

y

f (x)

f
−1(y)x

Original
function

Inverse function
y = f (x)

✲

❄

✻
✛

Figure 1.44: A function which has an

inverse

30kenenisabekelle.com/, accessed January 11, 2011.
31The notation f

−1 represents the inverse function, which is not the same as the reciprocal, 1∕f .
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56 Chapter 1 FOUNDATION FOR CALCULUS: FUNCTIONS AND LIMITS

48. (a) If f (x) = ax
2 + bx+ c, what can you say about the

values of a, b, and c if:

(i) (1, 1) is on the graph of f (x)?

(ii) (1, 1) is the vertex of the graph of f (x)? (Hint:

The axis of symmetry is x = −b∕(2a).)

(iii) The y-intercept of the graph is (0, 6)?

(b) Find a quadratic function satisfying all three con-

ditions.

49. A box of fixed volume V has a square base with side

length x. Write a formula for the height, ℎ, of the box

in terms of x and V . Sketch a graph of ℎ versus x.

50. A closed cylindrical can of fixed volume V has radius r.

(a) Find the surface area, S, as a function of r.

(b) What happens to the value of S as r → ∞?

(c) Sketch a graph of S against r, if V = 10 cm3.

51. The DuBois formula relates a person’s surface area s,

in m2, to weight w, in kg, and height ℎ, in cm, by

s = 0.01w0.25
ℎ
0.75

.

(a) What is the surface area of a person who weighs

65 kg and is 160 cm tall?

(b) What is the weight of a person whose height is

180 cm and who has a surface area of 1.5 m2?

(c) For people of fixed weight 70 kg, solve for ℎ as a

function of s. Simplify your answer.

52. According to Car and Driver, an Alfa Romeo going at

70 mph requires 150 feet to stop.56 Assuming that the

stopping distance is proportional to the square of ve-

locity, find the stopping distances required by an Alfa

Romeo going at 35 mph and at 140 mph.

53. Poiseuille’s Law gives the rate of flow, R, of a gas

through a cylindrical pipe in terms of the radius of the

pipe, r, for a fixed drop in pressure between the two ends

of the pipe.

(a) Find a formula for Poiseuille’s Law, given that the

rate of flow is proportional to the fourth power of

the radius.

(b) If R = 400 cm3/sec in a pipe of radius 3 cm for a

certain gas, find a formula for the rate of flow of

that gas through a pipe of radius r cm.

(c) What is the rate of flow of the same gas through a

pipe with a 5 cm radius?

54. A pomegranate is thrown from ground level straight up

into the air at time t = 0 with velocity 64 feet per sec-

ond. Its height at time t seconds is f (t) = −16t2 + 64t.

Find the time it hits the ground and the time it reaches

its highest point. What is the maximum height?

55. The height of an object above the ground at time t is

given by

s = v0t −
g

2
t
2
,

where v0 is the initial velocity and g is the acceleration

due to gravity.

(a) At what height is the object initially?

(b) How long is the object in the air before it hits the

ground?

(c) When will the object reach its maximum height?

(d) What is that maximum height?

56. The rate, R, at which a population in a confined space

increases is proportional to the product of the current

population, P , and the difference between the carrying

capacity, L, and the current population. (The carrying

capacity is the maximum population the environment

can sustain.)

(a) Write R as a function of P .

(b) Sketch R as a function of P .

In Problems 57–61, the length of a plant, L, is a function of

its mass, M . A unit increase in a plant’s mass stretches the

plant’s length more when the plant is small, and less when

the plant is large.57 Assuming M > 0, decide if the function

agrees with the description.

57. L = 2M1∕4 58. L = 0.2M3 +M
4

59. L = 2M−1∕4 60. L =
4(M + 1)2 − 1

(M + 1)2

61. L =
10(M + 1)2 − 1

(M + 1)3

In Problems 62–64, find all horizontal and vertical asymp-

totes for each rational function.

62. f (x) =
5x − 2

2x + 3
63. f (x) =

x
2 + 5x + 4

x2 − 4

64. f (x) =
5x3 + 7x − 1

x3 − 27

65. For each function, fill in the blanks in the statements:

f (x) → as x → −∞,

f (x) → as x → +∞.

(a) f (x) = 17 + 5x2 − 12x3 − 5x4

(b) f (x) =
3x2 − 5x + 2

2x2 − 8
(c) f (x) = e

x

66. A rational function y = f (x) is graphed in Figure 1.95.

If f (x) = g(x)∕ℎ(x) with g(x) and ℎ(x) both quadratic

functions, give possible formulas for g(x) and ℎ(x).

1

y = 2
y

y = f (x)

x

Figure 1.95

56http://www.caranddriver.com/alfa-romeo/4c. Accessed February 2016.
57Niklas, K. and Enquist, B., “Invariant scaling relationships for interspecific plant biomass production rates and body

size”, PNAS, Feb 27, 2001.
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76 Chapter 1 FOUNDATION FOR CALCULUS: FUNCTIONS AND LIMITS

Solution If we try to evaluate at x = 3, we get 4∕0which is undefined. Figure 1.129 shows that asx approaches

3 from the right, the function becomes arbitrarily large, and as x approaches 3 from the left, the

function becomes arbitrarily large but negative, so this limit does not exist.

3
x

y

Figure 1.129: Limit of y = (x + 1)∕(x − 3) does not exist at x = 3

The limit in Example 1 does not exist because as x approaches 3, the denominator gets close to

zero and the numerator gets close to 4. This means we are dividing a number close to 4 by a smaller

and smaller number, resulting in a larger and larger number. This observation holds in general: for

continuous functions, if g(c) = 0 but f (c) ≠ 0, then lim
x→c

f (x)∕g(x) does not exist.

Limits of the Form 0∕0 and Holes in Graphs

In Example 4 of Section 1.7 we saw that when both f (c) = 0 and g(c) = 0, so we have a limit of the

form 0∕0, the limit can exist. We now explore limits of this form in more detail.

Example 2 Evaluate the following limit or explain why it does not exist:

lim
x→3

x
2 − x − 6

x − 3
.

Solution If we try to evaluate at x = 3, we get 0∕0 which is undefined. Figure 1.130 suggests that as x

approaches 3, the function gets close to 5, which suggests the limit is 5.

3

5

x

y

Figure 1.130: Graph of y = (x2 − x − 6)∕(x − 3) is

the same as the graph of y = x+ 2 except at x = 3

This limit is similar to the one we saw in Example 4 of Section 1.7, so we check it algebraically

using a similar method. Since the numerator factors as x2 − x− 6 = (x− 3)(x+ 2) and x ≠ 3 in the

limit, we can cancel the common factor x − 3. We have:

lim
x→3

x
2 − x − 6

x − 3
= lim

x→3

(x − 3)(x + 2)

x − 3
Factoring the numerator

= lim
x→3

(x + 2) Canceling (x − 3) since x ≠ 3

= 3 + 2 = 5 Substituting x = 3 since x + 2 is continuous
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176 Chapter 3 SHORT-CUTS TO DIFFERENTIATION

This identity shows us how the hyperbolic functions got their name. Suppose (x, y) is a point

in the plane and x = cosh t and y = sinh t for some t. Then the point (x, y) lies on the hyperbola

x
2 − y

2 = 1.

Extending the analogy to the trigonometric functions, we define

Hyperbolic Tangent

tanhx =
sinhx

coshx
=

e
x − e

−x

ex + e−x

Derivatives of Hyperbolic Functions

We calculate the derivatives using the fact that
d

dx
(ex) = e

x. The results are again reminiscent of

the trigonometric functions. For example,

d

dx
(coshx) =

d

dx

(

e
x + e

−x

2

)

=
e
x − e

−x

2
= sinhx.

We find
d

dx
(sinhx) similarly, giving the following results:

d

dx
(coshx) = sinhx

d

dx
(sinhx) = coshx

Example 3 Compute the derivative of tanhx.

Solution Using the quotient rule gives

d

dx
(tanhx) =

d

dx

(

sinhx

coshx

)

=
(coshx)2 − (sinhx)2

(coshx)2
=

1

cosh2 x
.

Exercises and Problems for Section 3.8 Online Resource: Additional Problems for Section 3.8
EXERCISES

In Exercises 1–11, find the derivative of the function.

1. y = sinh(3z + 5) 2. y = cosh(2x)

3. g(t) = cosh2 t 4. f (t) = cosh(sinh t)

5. f (t) = t
3 sinh t 6. y = cosh(3t) sinh(4t)

7. y = tanh(12 + 18x) 8. f (t) = cosh(et
2
)

9. g(�) = ln (cosh(1 + �))

10. f (y) = sinh (sinh(3y))

11. f (t) = cosh2 t − sinh2 t

12. Show that d(sinh x)∕dx = cosh x.

13. Show that sinh 0 = 0.

14. Show that sinh(−x) = − sinh(x).

In Exercises 15–16, simplify the expressions.

15. cosh(ln t) 16. sinh(ln t)
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476 Chapter 9 SEQUENCES AND SERIES

Solution (a) Each term is twice the previous term plus one; for example, 7 = 2 ⋅ 3 + 1 and 63 = 2 ⋅ 31 + 1.

Thus, a recursive definition is

sn = 2sn−1 + 1 for n > 1 and s1 = 1.

There are other ways to define the sequence recursively. We might notice, for example, that the

differences of consecutive terms are powers of 2. Thus, we could also use

sn = sn−1 + 2n−1 for n > 1 and s1 = 1.

(b) We recognize the terms as the squares of the positive integers, but we are looking for a recursive

definition which relates consecutive terms. We see that

s2 = s1 + 3

s3 = s2 + 5

s4 = s3 + 7

s5 = s4 + 9,

so the differences between consecutive terms are consecutive odd integers. The difference be-

tween sn and sn−1 is 2n − 1, so a recursive definition is

sn = sn−1 + 2n − 1, for n > 1 and s1 = 1.

Recursively defined sequences, sometimes called recurrence relations, are powerful tools used

frequently in computer science, as well as in differential equations. Finding a formula for the general

term can be surprisingly difficult.

Convergence of Sequences
The limit of a sequence sn as n → ∞ is defined the same way as the limit of a function f (x) as

x → ∞; see also Problem 80 (available online).

The sequence s1, s2, s3,… , sn,… has a limit L, written lim
n→∞

sn = L, if sn is as close to L as

we please whenever n is sufficiently large. If a limit, L, exists, we say the sequence converges

to its limit L. If no limit exists, we say the sequence diverges.

To calculate the limit of a sequence, we use what we know about the limits of functions, includ-

ing the properties in Theorem 1.2 and the following facts:

• The sequence sn = x
n converges to 0 if |x| < 1 and diverges if |x| > 1

• The sequence sn = 1∕np converges to 0 if p > 0

Example 5 Do the following sequences converge or diverge? If a sequence converges, find its limit.

(a) sn = (0.8)n (b) sn =
1 − e

−n

1 + e−n
(c) sn =

n
2 + 1

n
(d) sn = 1 + (−1)n

Solution (a) Since 0.8 < 1, the sequence converges by the first fact and the limit is 0.

(b) Since e
−1

< 1, we have lim
n→∞

e
−n = lim

n→∞
(e−1)n = 0 by the first fact. Thus, using the properties

of limits from Section 1.8, we have
lim
n→∞

1 − e
−n

1 + e−n
=

1 − 0

1 + 0
= 1.

(c) Since (n2 + 1)∕n grows without bound as n → ∞, the sequence sn diverges.

(d) Since (−1)n alternates in sign, the sequence alternates between 0 and 2. Thus the sequence sn

diverges, since it does not get close to any fixed value.
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676 Chapter 12 FUNCTIONS OF SEVERAL VARIABLES

16. Match the surfaces (a)–(e) in Figure 12.52 with the con-

tour diagrams (I)–(V) in Figure 12.53.

x y

z(a)

x y

z(b)

x

y

z(c)

x

y

z(d)

x

y

z

(e)

Figure 12.52

y

x

−3

−1

0

1

3

(I) y

x

1
3

(II)

x

y

✠

✠ 0

−4(III) y

x

✠

✾

1

6

(IV)

y

x
1 6 1

(V)

Figure 12.53

17. Figure 12.54 shows the contour diagram of z = f (x, y).

Which of the points (I)–(VI) lie on the graph of z =

f (x, y)?

I. (1, 0, 2) II. (1, 1, 1)

III. (0,−1,−2) IV. (−1, 0,−2)

V. (0, 1, 1) VI. (−1,−1, 0)

−2 −1 1 2

−2

−1

1

2

−2

−1

0
1

1
2

2

x

y

Figure 12.54

18. Match Tables 12.6–12.9 with contour diagrams (I)–

(IV) in Figure 12.55.

Table 12.6

y∖x −1 0 1

−1 2 1 2

0 1 0 1

1 2 1 2

Table 12.7

y∖x −1 0 1

−1 0 1 0

0 1 2 1

1 0 1 0

Table 12.8

y∖x −1 0 1

−1 2 0 2

0 2 0 2

1 2 0 2

Table 12.9

y∖x −1 0 1

−1 2 2 2

0 0 0 0

1 2 2 2

(I)

x

y

3
2

1

0

1
2
3

(II)

x

y

0

1
2
3
4

(III)

x

y

2

1
0
−
1
−
2

(IV)

x

y

3 2 1 0 1 2 3

Figure 12.55
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976 Chapter 19 FLUX INTEGRALS AND DIVERGENCE

The outward unit normal n⃗ points in the direction of xi⃗ + yj⃗ , so

n⃗ =
xi⃗ + yj⃗

‖xi⃗ + yj⃗ ‖

=
R cos �i⃗ + R sin �j⃗

R
= cos �i⃗ + sin �j⃗ .

Therefore, the area vector of the coordinate patch is approximated by

ΔA⃗ = n⃗ ΔA ≈
(

cos �i⃗ + sin �j⃗
)

RΔzΔ�.

Replacing ΔA⃗ , Δz, and Δ� by dA⃗ , dz, and d�, we write

dA⃗ =
(

cos �i⃗ + sin �j⃗
)

Rdzd�.

This gives the following result:

The Flux of a Vector Field Through a Cylinder

The flux of F⃗ through the cylindrical surface S, of radius R and oriented away from the

z-axis, is given by

∫
S

F⃗ ⋅ dA⃗ =
∫
T

F⃗ (R, �, z) ⋅
(

cos �i⃗ + sin �j⃗
)

Rdzd�,

where T is the �z-region corresponding to S.

Example 3 Compute ∫
S
F⃗ ⋅ dA⃗ where F⃗ (x, y, z) = yj⃗ and S is the part of the cylinder of radius 2 centered on

the z-axis with x ≥ 0, y ≥ 0, and 0 ≤ z ≤ 3. The surface is oriented toward the z-axis.

x

y

z

Figure 19.23: The vector field F⃗ = yj⃗ on the surface S

Solution In cylindrical coordinates, we have R = 2 and F⃗ = yj⃗ = 2 sin �j⃗ . Since the orientation of S is

toward the z-axis, the flux through S is given by

∫
S

F⃗ ⋅ dA⃗ = −
∫
T

2 sin �j⃗ ⋅ (cos �i⃗ + sin �j⃗ )2 dz d� = −4
∫

�∕2

0 ∫

3

0

sin2 � dz d� = −3�.
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